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PREFACE
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with AFAPL/POP/, and was under the direction of Paul Lindquist and
William Kinzig.
The final report covers work conducted from 7 March 1974 through
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Gerry Amies was the principal investigator. Special acknowledgement is also

given to J. B. Greene , R. J. Levek, D. A. Struessel, and R. E. Young.
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ABSTRACT

This report describes the development and verification of four computer
programs used to simulate hydraulic systems under dynamic conditions. The
programs were developed by McDonnell Douglas Corp. under contract with the
Air Force. The Hydraulic Systems Frequency Response (HSFR)} program predicts
the ripple in the flow from piston-type pumps and shows how it is transmitted
and attenuated through the system. It predicts the resonant frequencies and
the locations and amplitudes of the standing waves of the oscillatory flow
and pressure. The Steady-State Flow Analysis (SSFAN) program defines the
system flow and pressure distribution resulting from the simultaneous operation
of actuator devices under any combinations of loads and rates. The Hydraulic
Transient Analysis (HYTRAN) program simulates the dynamic response of a system
to sudden changes in load flow demand. The typical input to the system is a
valve motion from which pressure and flow disturbances propagate through the
system, causing pump and component responses. The Hydraulic Transient Thermal
Analysis (HYTTHA) program predicts the effects of system heat generation and
dissipation of the temperatures and performance of a hydraulic system.

The Air Force has made the programs available to all prospective users
and has rendered technical assistance. User manuals and programs were first
made available to industry in September 1974, and updated versions were

disseminated at the final oral nresentation in February 1977.
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SECTION I
INTRODUCTION

This report describes the work performed under the Aircraft Hydraulic
System Performance Analysis contract.

The task was to develop and verify computer programs to simulate aircraft
hydraulic systems. Four digital computer programs were developed.

The Hydraulic System Freguency Response (HSFR) predicts how oscillatory

flows and pressures caused by the acoustical energy content of a pump output
are transmitted through the lines and components of a hydraulic system.

The program predicts the pump speeds at which major resonances occur,
and defines the amplitude and location of the oscillatory pressure and flow

standing waves. The description of the system being simulated is easily

changed to investigate various practical system modifications for the
attenuation and/or relocation of the major resonant conditions. This capability
allows potential problems related to hydraulic acoustic energy to be eliminated
1 during the design stage.
The user describes the system to be simulated by means of punched
1 data cards. The description includes the type and physical characteristics
of each of the elements of the circuit. An element may be a pump, a section
of liune, a fittiug, a component, or a branch,
The user completes the problem statement by specifying the range of
i pump speed and the harmonic of intere-:t, the locations at which flow, pressure,

impedance, and/or energy levels are to be plotted, the fluid type, the fluid

temperature, and the steady state pump output pressure.

The program calculates the oscillatory pressures and flows at the input
to system elements. Standing wave characteristics produce large variations
in pressure amplitude along the length of a line. Division of a length of
line into small elements may be required to allow this standing wave pattern
to be examined to ensure that an excessive pressure amplitude is not being
ignored.

Acoustic analysis can be performed on the pressure side or on both

the pressure and return sides of a system.

i
4
3
1
3
4
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The Hydraulic Transient Analysis (HYTRAN) predicts the dynamic response

of a system to sudden changes in load flow demands. The input to the system
is normally a servo valve or solenoid valve motion from which pressure and
flow disturbances propagate through the system, causing pump and component
responses.

The program simulates the complete system and calculates the value of all
the flows, pressures and state variables, throughout the system.

HYTRAN is composed of five basic parts, input, steady state calculation,
line simulation, component simulation, and output.

The designer inputs data describing the lines, components and system
configuration.

The steady state section of the program balances the pressures and flows
in the system and calculates the initial values for all the system state
variables. Cnce the initial values are established at zero time, the program
starts by calculating for a small change in time (delta T), new flows and
pressures in the lines.

Once the new pressures and flows have been established for the lines the
program calculates new values for the state variables of all the components,
and the flows and pressures at the juanctions between the components and the
lines.

The program continues to march forward in time (delta T) intervals, first
calculating the line and then the component variables.

The output part of the program selects the variables that are required
as output of output plots, at specified time steps. When the program calcula-
tions are completed, the output is then printed and plotted.

The output is essentially a time history of selected system variatles
which have been disturbed by the controlling input.

Since the program actually advances in discrete time steps, it can be
integrated into other simulations.

The Steady State Fiow Analysis (SSFAN) Program predicts the steady state

flows and pressures in a closed loop aircraft hydraulic system.
It uses a building blo~k approach so that new elements or components can
be added with minimum change to the rest of the program. A matrix method is

used to compute the steady state flows throughout the system line network.




The program corrects viscosities for pressure, determines whether flow is

laminar, transitive or turbulent to apply appropriate resistance factors;
and corrects reservoir pressure for altitude.

Some of the outputs of SSFAN can be predicted values of flow rate,
surface rate, pressure drop, pressure, or subsystem operating time. The
program can also be used to predict steady-state mctor speads and actuator
rates under varying load conditions.

The Hydraulic Transient Thermal Analysis (HYTTHA) Program predicts the

effects of system heat generation and dissipation of the temperature and
performance of an aircraft hydraulic system.

The program can simulate complete closed loop systems. It calculates
flows, pressures, state variables, ccmponent temperatures, fluid temperatures,
and line wall temperatures throughout the system.

The program is composed of four basic parts; input, steady state calcula-
tions, thermal line and component calculations, and output.

The designer inputs data describing the lines, ambient thermal conditions
components, and system configuration.

The steady state part of the program balances the pressures and flows in
the system, and calculates for all the system state variables. Once the
initial values are established at zero time, the program calculates new

temperatures throughout the system for a small change in time (DELT).

The program continues the calculations at DELT intervals, first calculating

the system flows pressures and state variables and then calculating the line

and component temperatures.
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SECTION II
TEST METHODS

Test conditions for transient and frequency response tests were altered
as testing progressed to minimize testing of components which showed no significant
dynamic effects. For components which showed significant dynamic effects (pump,
check valve, etc.) test conditions were expanded to further investigate these
effects.

Standard test temperature range was 70°F to 210°F, which was attainable
on the component test bench set-up without requiring elaborate temperature
conditioning equipment.

Testing was accomplished with both MIL-H-5606B and MIL-H-83282 hydraulic
fluids. The range of flows investigated was from zero to 157 CIS. The
dissolved air content of the fluid in the test bench for all the data runs
was less than 1% by volume. Test conditions that deviated from the above are
noted.

Each test run was assigned a unique number. The run number definition

is explained in Figure 1.

BASIC RUN NUMBER s * INDICATES F¥LOW-UP
l + INDICATES TURN-ON TRANSIENT

INDICATES TURM-OFF TRANSIENT

|
XX =-XX—-XX

‘qi PARAMETER (P1,P2,Q1,Q2, XH ETC.)

TEST NUMBER

TEST SPECIMEN LuMBLR
10-19 30 FT ..INE
2 no MISCELLANLOUS

(VALVES, PUMP, FILTLR,
ACCUMULATOR, ETC.)

FIGURL 1 - TEST RUN NUMBER DEFINITION




1. FREQUENCY RESPGONSE TESTS

Frequency responge tests were required for verifying the frequency domain
(HSFR) pump model, and model/system interaction. Test conditions established
the pump frequency characteristics with steady state flows from laminar to
turbulent conditious. The effects of temperature were investigated. For each
test condition, amplitude and phase data of the pump inlet and ou-let pressures
and flows were recorded, and harmonic analysis was performed at system resonance
points. Time domain data was also recorded at several speeds for pump internal
and boundary parameters.
2. TRANSIENT TESTS

a. Test Benches and Conditions ~ The time domain component standard test

series determined the effects of the test specimen on system transient
response.

The test specimen inlet pressure range depended on whether it was
tested as a pressure side or return side component. Hyd aulic power for
the transient test was provided by the pump via an F-15 JFS accumulator.
Transient flow demands were generated by opening and closing a fast
response control valve, with data recorded during both portions of the cycle,

Data was required for transient flow changes to and from two peak
flow levels at each of two temperature levels, one peak flow value in the
laminar flow range, and one in the turbulent flow range.

Peak steady-state flow and test specimen inlet pressure were preset
before the transient test using the pressure or return load valve with
the transient control valve open and the flow control servovalve at full
signal. This recharged the JFS accumulator prior to each transient discharge.

Transient pressure and flow on both sides of the specimen were
recorded during the opening and closing transients. Temperatures were
stabilized and recorded during the flow calibration.

Some of the component tests dictated that configuration changes be made
to the basic test bench. These components included the F-15 instrumented
pump, two stage relief valve, and two pump tests. These changes are
explained with the discussion of the data.

Tests were run to study cavitation waves downstream of a tast closing
valve. The effects of different valve closing rates and temperatures

were monitored at different system aivr contents,

e
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The effects of varying system pressure from 1500 to 3750 psi were
tested to verify the computer program for that range of pressures.

The F-15 iron bird's utility speedbrake system was tested to verify

a simple system with the HYTRAN computer program.

. b b. Test Problems
e LG (1) Fast Control Valve ~ A good deal of effort was required to develop

a fast operating control valve that would provide the transients for the
test system. Desired valve closing time was about 2 milliseconds from

a maximum flow rate of 40 GPM. Solenoid valves were ruled out as being

to slow and not providing a sharp cutoff characteristic. Commercial
solenoid operated poppet valves could handle the desired flow rates,
but the closing times were too slow. It was felt that with a few
changes, a commercial poppet valve could produce the required
operating times.

A Victor SV 415-9021 sclenoid operated poppet valve was chosen
for modification. The standard valve incorporates a balanced poppet
design which accounts for its high flow ability at high pressure.
The poppet was directly actuated by the solenoid. In the modified
version of the valve the solenoid was removed and the poppet ii
displaced by a spring and push rod arrangement.

A servovalve driven piston was connecred to the opposite

side of the spool as shown in Figure 2.

Spring .
(; Piston Leakage El
Flow to ow
- System Rtn. &
N
/ 4 P
Flow from ——— A -
S.rvo Valve mp ] == —01 — —
\ v /‘/ - ’ + ’/
+¥/ s §
4 ! P A
Y
/ |
Piston ~ / Flow — Poppet i
. ‘ K GRTT-0387 7

FIGURL 2. MODIFIED VICTOR SOLENOID VALVE

(SHOWSN IN PRESSURE OPENED SPRING CLOSLD CONFIGURATIOXN)




Al R e Y B Alah £ Do T i 4 Bt SRR AT 8

Much time and effort was spent perfecting the valve operation.
Even after this was accomplished, many problems with the valve plagued

the verification test efforts. These problems included poppet bounce

on closing, premature closing due to poppet flow forces, and lack of
y adequate poppet rate control.

fs' 'v%f (2) Mechanical Vibration -~ Trouble was encountered from reflections

{ ,A,j; in the system when using a long line test configuration (see Figure 3).
iﬂ b For example, small amplitude high frequencies can be seen on P3 in
Figure 4. These reflections were determined timewise to have occurred
at the 180° bends. The reflected wave from the fast closing valve
travelled down the surface of the tube faster than in the tluid because

of the differences betweer the velocity of sound in the two mediums.
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FIGURE 3. LONG LINE TEST CONFIGURATION

The lines were then clamped at approximately 18" intervals to
‘{ simulate the amount of mechanical damping that actually occurs in an
; b aircraft hydraulic system. Pj3 In Figure > shows that tne effect of
: k clamping greatly reduces the mechanical vibration and the excessive
reflections when compared with Py, Figure 4. Since {t was desired
that an adequace line model be veritied, It was necessary to eliminate
as cuch of the mechanical movement as possible to ride the system of

these internal reflections.  Thus the line system was further weighted

and clamped down.
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4 Time Scale: 20 msec/cm
i Date: 16 May 1975
2 Condition: Turn-off Transient
;; FIGURE 4, UNDAMPED LINE MECHANICAL VIBRATIONS
5

Flow: 17.25 CIs
Temp: 125°F

Time Scale: 20 msec/cm
Date: 23 May 1975

Flow Condition: Turn-off Transient

FIGURE 5. DAMPED LINE MECHANICAL VIBRATIONS
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liﬁ The differences in Py und P3 pressure traces for the clamped
¢ and unclamped lines are shown in Figures 6 and? , respectively, for
the 1/2" diameter tube with a turn-on translent.
] P
} F3 |
E VALVE 20S
&
5 PZ.
Flow: 17.25 CIS
Temp: 125°F
1 Tiwe Scale: 20 msec/cm
B Date: 16 May 1975
4 Flow Conditirn: Turn-on Transient
:‘ FIGURE 6. LINES UNCLAMPED
F1
P3.
g 31
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FLOW: 17.25 ¢18

Temp: 125°F
Time Scale: 20 msec/cm
Dute: 23 May 1675

Flow Cundition: Turn-~on Transient
FIGURE 7. LINES CLAMPED
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(3) Pump Test Pruoblems - The turn~off transients caused an abnormal

oscillation in the hanger position data (XH) during the first two pump

test series runs, Flgures 8 and 9 ghow that the LVDT was not properly

tracking the hanger movement. The transducer .ras originally installed
so that the probe shaft extended into the pump case and rested on the
2%' actuator spring piston. The probe shaft was spring loaded to eliminate
4 slop and to overcome the forces resulting from case pressurer. However
4 it appears that this preload was not adequate to track the response

f;[ of the hanger. TNifferent preload springs were tried without much

E success, The spring was removecd from the LVDT and pressurized

nitrogen was used to force the probe against the actuator spring
piston. The gas pressure exerted a mnre constant pressure on the

LVDT probe over its full range of travel and thus it was able to

accurately track the hanger as shown in Figure 1lu.
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(4) Operational Life of Hot Film Anemometer Probes - The first two

Thermal Systems Incorporated hot film probes failed after 50 hours
of operation. These were mechanical failures caused by a separation of
the connecting wire from the fiim surface. Separation occurred because
of strain cracks that developed in the epoxy insulating the probe tip
from the anemom=ter case. Additional efforts were made to locate the
probes in acoustically quiet areas in the system (i.e. not at the peak
of a pressure standing wave). This coupled with improved probe con-
struction by the manufacturer appreciably extended the useful life of
the hot film probes.
3. STEADY STATE TESTS
The flow domain test series provides steady-state pressure drop and flow
data on the component test specimen. Data was recorded as the steady-state flow
was varied from zero to a maximum value and back to zero again. The maximum
flow depended on the test specimen and downstream test bench flow resistance,
instrumentation operating limits, and pump capacity.

4, THERMAL TESTS
Thermal testing was performed on the test bench and the F-15 iron bird's

utility speedbrake system. Thermal properties cf steady state and transient
operating hydraulic systems were investigated.

Steady state testing on the test bench consisted on rumning the system
at a constant temperature and flow and recording the heat transfer through
each component. Transient test temperatures were monitored from start-up
ambient temperature until the system stabilized at some specified operating
condition.

The utility system oil on the F-15 iron bird was heated by cycling an
actuator in the system. The speedbrake subsystem remained near ambient
temperature during this period. The speedbrake selector valve was cycled
to operate the speedbrake and the subsystem warm—up characteristics were

measured. Data was recorded for opening, clesing, and reversal.




SECTION IIIX
INSTRUMENTATION

Accurate test data was essential for the development and verification
of the Aircraft Hydraulic Systems Performance Analysis Computer Programs. As
with any test program choosing and setting up the proper instrumentation to
measure the data must be done painstakingly and correctly to assure reasonable
accuracy. Proper selection of test equipment and test procedures can
contribute greatly to the effectiveness and accuracy of the element model
verification.

The development and verification of component models required special
care in the selection of the variables to be measured and how they were measured.
For a general model this required monitoring the variables at all the external
connections. Because of the complex nature of fluid behavior in the individual
components caused by a system disturbance (e.g., a valve closing) the mathematical
representation in the computer program becomes quite sophisticated. Therefore
the key variables must be recorded for the proper model verification of a
component. The effeort in the Hydraulic Dynamics Laboratory refined the procedures
and techniques needed to evaluate the operating characteristics of hydraulic
system components.
1. HYDRAULIC PERFORMANCE ANALYSIS FACTLITY

The Hydraulic Performance Analysis Facility (HPAF) was built to prcvide
an improved means for obtaining dynamic test data on hydraulic components and
systems, Program verification is accomplished by comparing results obtained
from the computer analyses with actual data obtained in the test facility.

a. Description - The major items which make up the HPAF are a pump

drive system, a fluid deaeration unit, a test bench, and an instrumentation

and data handling system. The following paragraphs present some of the

defining requirements for these items as well as theilr general descriptions.

Figure 11 1s a photograph showing the layout of the facility.

13

:
L.-__mmw—-_—— PP RETRTe—e i, i ik




1.
3

P R T T

e Capg e -

FIGURE 11. HYDRAULIC PERFORMANCE ANALYSI1S FACILITY

b. Pump Drive System - The requirement for tes¢ ing fast resvonse

hydraulic pumps such as those employed on the F-15 aircratt provided

one of the primary justifications for the HPAF. Conventional laboratory

s s TP

: drives do not provide adequate speed control or "dynamic stiffness'" to
-, maintain a constant pump speed as transient flow loads are applied. As
v a result, pump performance data is often obscured by speed vari-
'
;- ations and in some cases erroneous data results because the speed

. . variations cause abnormal pump operation. The pump drive system

S (Figure 12) in the HPAF is a direct drive 200 horsepower unit ot the

adjustable frequency AC type capable of speeds up to 7000 RPM, 1t
climinates significant speed variations under changing load conditions

speed and torque and adjusting motor Jdrive rrequencs

by sensing output
accordinglyv,  The direct drive feature eliminates elements which could
introduce backlash or compliance to allow dynamic testing ot hiph

Fesponse pumps.
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FioURE 1. PUMP DRIVE SYSTEM

«. Fluid Deaeration System - One of the variables which affects the

3 dynamic performance of a hydraulic system is the amount of dissolved
alr in the fluid., Afr content in a system can vary significantly

- depending on filling and bleeding procedures, and operating pressures.

- It owas concluded that a means of controlling dissolved air content

wias required.  Further, it was decided that to obrain baseline data
the best approach tor dealing with the dissolved dir problem was to
reduce the air content to an insigniticant level.  To accompiish thia,
cdoaeration system (Figure 13) was tabricated.  This unit has the

capabd ity ot madntainine the air content within the svatem dt less

thn by vo o, Aol medsut ing svstem allows veritication ot
T oot adr et st ot rod and voritroation ot biphor Tevel
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FIGURE 14. DEAERATION UNIT HYDRAULIC SCHEMATIC

Figure 14 shows the hydraulic schematic for the hydraulic fluid

degassing unit. The MCAIR built unit is capable of degassing and

storing a quantity of oil. O0il can be circulated through the test

system from the degassing unit power supply, wnich also supplies
power to operate the jet pump.

The unit 13 capable of iritially evacuating the test system with
or without operation of the system pump, loading previously degacsed

oil into the system, degastc'ng cil at a high rate while in series or

parallel with the system, and receiving and storing degassed oil from

the system before test specimen changeover.
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d. Test Bench - The test table was designed to accommodate most
specimen configurations with minimum changeover effocrt. In addition
to providing a location for the specimern and instrumentation, the
table included the equipment for generating transient hydraulic flows.
Transients were generated with the specially developed fast control
valve which had operating times on the order to two milliseconds.

The test beuch and instrumentation schematic is shown in Figure 15
for component transient tests. Steady state flow rate was controlled
by the load valve downstream of the test station. Transient flow
semands were generated by opening and closing the fast response solenoid
control valve. Pressures and flows were recorded on both sides of the
test specimen during the opening and closing transients. The basic power
supply consisted of a hydraulic pump, a commercial PULSCO hydraulic
acoustic noise attenuator, pressure filter, case drain filter, and
gystem relief valve. Hoses and quick disconnects at the pump permitted
hookup of the oil degassing unit with or without the pump in the circuit,
The case drain quick disconnect was required to pressurize the pump
case from degassor power when the system was degassed with the pump
connected. Test specimen temperature was controlled by stabilizing
test bench temperatures with an industrial type heat exchanger in the
pump suction line. A pressure hose permitted movement of the pressure
side of the set-up to accommodate various rest specimen envelopes. A
flow control servo valve in the pressure supply line permitted remote
control cycling of flow rates for steady-~state flow domain tests. The
F-4 bootstrap reservolr was scrategically located at the termination of
the straight test section to minimize dynamic reflections at the test
specimen. Reservoir bootstrap pressure control was independent and
variable. The reservoir pressure relief valve prevented overpressurization,
and allowed safe operation slightly over normal reservoir pressure. The
suction line was large to preclude pump cavitation during normal test
conditions.

The test section consisted of an accumulator for transient power
supply and additional source noilse attenuation, solenoid control and load

valves, and upstream/downstream instrumentation across the test specimen.
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FIGURE 15, STEADY STATE AND TRANSIENT TEST BENCH HYDRAULIC SCHEMATIC

3 The test section was the highest point in the circuit to minimize
fluid loss and air absorption during specimen changeover.

e. Instrumentation and Data Handling System - One common problem 1s the

installation of a transducer itself on the dynamic performance of the systenm.

Several approaches are emnloyed to reduce this effect in the HPAF,
These include the use of Clamp-on pressure transducers and hot wire
anemometer flowmeters.
Figure 16 shows a cross section of the instrumented section of the
test bench, upstream of the test specimen, for flow/time domain tests.
The downstream instrumented section was identical to the upstream section.
The instrumented sections were designed to minimize flow disturbances.
Split blocks were clamped over the tube section with matching block-to-tube
noles for temperatures and flow probes, and pressure transducers. Fittings
were drilled out to match tubing inside diameters where fitting wall
thickness permitted. Pressure transducers were installed as near to the

tflow stream as possible, without protruding into the stream.
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FIGURE 15, INSTRUMENTATION SECTION - COMPONENT MODEL
VERIFICATION, STEADY STATE AND TRANSIENT

The primary element in the data handling system was a Wang 2200B
programmable calculator. This calculator, with its optional thermal
printer and X-Y plotter was capable of outputting measured data in report
format. Transient data was input into the calculator under program
control via a 4-channel transient recorder which accepted the analog
transducer outputs, converted them to digital form, and stored them.

The Wang system was also used as a terminal for direct communication
with a general purpose digital computer when expanded capabilities

were required. Figure 17 is a photograph showing the calculatcr system.



FIGURE 17, WANG 2200B PROGRAMMABLE CALCULATOR SYSTEM

2. DATA RECORDING AND PROCESSING

Figure 18 shows a block flow diagram of the instrumentation and data
recording facilities. The data was taken via transducers, strain gages,
flowmeters, thermocouples, etc., through their respective electronics to the
patch panel. Data from the panel routed to a l4-track intermediate band FM
magnetic tape recorder and to a 4-channel waveform recorder. The waveform
recorder manufactured by Biomation Corporation was capable of recording 1000
points of data for each channel with a channel resolution of 10 binary bits per
data word. Response of the data system, including the tape recorder, was

from DC to 10,000 Hz. Recorder accuracy was 1% or better.
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l@ The processing of the data began with mounting the appropriate data tape
on the recorder and playin7 back four data channels at a time to the Biomation.
" These recorded analog signals wevre digitized (converted to a binary representa-
tion) by the Biomation waveform recorder. In this process some of the data was
lost to tape noise and flucter. A + .5% tolerance on the data was considered
.; good resolution. However, for a 4000 psi pressure pulse, + 20 psi can cause
the steady state portion of the computer simulation to be in error. See

§ Section 3 for a further discussion.

The data taken from the Biomation was stored on cassette tape through
a Wang 2200 programmable calculator. Calibration factors for scaling,
temperature and flow conditions were also stored on tape. One thousand data
pcints per channel were recorded on the cassette.

From the tape the data was plotted on the Wang X-Y plotter or output on
a thermal printer. The Wang calculator was interfaced with the CDC 6500 disk
files through a telecommunications link. Data was transferred to a file where

o it was merged with the computer programs.




3. PRESSURE MEASUREMENT

For a transient analysis, knowing the initial steady state boundary conditions
was important to starting the computer solution procedure. The problein of trying
to measure steady state data with transient recording instruments was significant
to this procedure. The pressure transducers being used were Statham thin film
strain gage transducers with a range of 0-5000 psia and a natural frequency of
70000 Hz in air. The best that they could be calibrated to was + 20 psia. A
5000 psia transducer cannot mechanically perform better, and further processing of
the pressure signal through the electronic system (+ 1/2% was typical of tape
noise) induced more error in the pressure reading. For the computer simulation
this would sometimes cause errors in the calculated steady state flow resulting
in erroneous pressure distributions.

The pressure transducers were calibrated for zero and maximum values
provided by electyonic circuitry, for every set of runs that were made. Each
transducer was calibrated to give a linear relationship between voltage and
pressure. Due to nonlinearities in the measuring equipment the trans-
ducers drifted irn both zero and scale calibrations giving significant
errors in pressure measurements. When necessary the pressure data was
averaged to find a mean value for the steady state pressure, and all the
other pressures were corrected to this mean value in order that meaningful
verification effort could be accomplished. This method gave acceptable
steady state starting and stopping conditions without drastically affecting

the data. Tha technique involved was electronically equivalent to using

one transducer as the standard and referencing the others to it thrcugh a
gain factor.
Cilamp-on pressure trausducers were also used in the transieac and
frequency testing. These Fiezo-electric transducers were Kistler 205 H2's.
They have a resolution of .1 psi/rms with a sensitivity of .5 mv/psi. The
maximum pressure measurable is 10000 psi and the transducers have a natural frequency

of 250000 Hz.




4, FLOW MEASUREMENTS

A main area of concern that developed in testing was the measurement of
transient flows in a simple line system. The inability to adequately measure
a flew reversal hampered the computer simulation verification of the HYTRAN
line model.

Although adequate pressure data can be obtained for the computer verifica-
tion, meaningful transient flow data is very difficult to record during a water-
hammer experiment.

The first transducer used to measure flow data was a Ramapo flowmeter.
Figure 19 presents a schematic of the flowmeter. In actual laboratory testing
the Ramapo flowmeter exhibited very poor damping characteristics when hit by a
transient. The flowmeter oscillated at about 360 Hz, which is its natural
frequency. Figure 20 shows typical results. The dynamic fluid flow force is
sensed as a drag force on a specially contoured body of revolution suspended
in the flow stream. The flow force is transmitted via a lever rod to a strain
gage bridge. The drag force is proportional tc the flcw rate squared. When
the drag element is hit by a transient wave, the cantilever beam arrang=ment
of the meter overreacts to the flow forces and begins to oscillate at its

natural frequency.
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After analyzing the test data from Task 1A, it was originally believed

3 that the flowmeters were placed at critical reflection points in the system.
; The test setup was expanded to locate a flowmeter in a different position.
The configuration is shown in Figure 21. From this setup it was confirmed
that the Ramapo flowmeter was oscillating at its natural frequency, and not
) being driven by internal reflectious.
P Figure 22 is an oscilloscope trace of the data points sampled by the
Biomation waveform recorder for Pjy, P3, Q1 and valve position. Q) is the
date trace of the Ramapo flowmeter before a square law relationship was applied
to the data fto convert it to a direct representation of the flow transient as
measured.

This flow data could not be used in the compute. program for model verifi-

cation, because of the underdamped condition exhibited by the Ramapo flowmeter.

It was hoped that better data would be obtained from hot film anemometers.
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a. Hot Film Anemometer Flow Measurement Development- The hot film

- anemometer was installed in approximately the same position as the Ramapo
) flowmeter in Figure 21, The pressure rransducer was located directly
opposite the anemomerer. The probe tip was inserted so that the center
of the film was approximately in the centerline of the tube. The hot
film probe is a Thermal System Inc., Model 1229 as shown in Figure 23.
The het film system uses a bridge balance network to supply current to
the sensor to keep it at a constant temperature. The amount of current

needed is a measure of the flow rate.

Lengths
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IFIGURE . MODEL 1229 HOT FILM PROBE -

SIDE FLOW WEDGE

The hot film sensors were chosen over hot wire sensors because of
the following advantages:

1. Less suceptible to fouling and easier to clean - helpful in

the high temperature ranges to reduce the effects of anv possible

0il degradation.

2. Excellent frequency response

3. More flexibility in sensor configuration

4, Lower heat conduction of the film to its supports which

allows a smaller sensor to minimize effects on the fluid flow.




The basic anemometer voltage is related to flow approximately
as follows:
EZ = [A+ B (pV) 1/M] (ts - ts) (1)
where A, B = constants depending on fluid properties
p = fluid density
V = velocity
M = exponent that varies with range and fluid (usually 2)
ts8 = sensor operating temperature
te = fluid or environmental temperature
This relation illustrates the non-linearity of the anemometer output
as well as the relationship with density, velocity and temperature.
A test run was made with the probe tip in the location shown in
Figure 24 and the oscilloscope trace of the pressure directly opposite the
hot film probe and the anemometer output voltage is shown in Figure 25.

The protrusion into the flow steam was chosen to place the sensor in

approximately thie centerline of the tube.

) v ¥ e FLOW

v A
/
PROBE TIP — L

Vau HOT FILM SENSOR

/

@ B FLOW

SECTION A-A

' IGURE 2%, PLACEMENT OF SENSOR IN 1/2" LINE

S NI y . B S P P




Flow: 27.6 CIS

Temp : 125°F

Time Scale: 20 msec/cm

Date: 24 May 75

Condition: Turn-off
transient

FIGURE 25. HOT FILM SENSOR DATA IN 1/2" LINE

The Q1 trace indicated much better flow data than was obtainable
with the Ramapo flowmeter. Unfortunately, negative flow measurements
were not accurate because of the direction in which the probe tip was placed.
The next step was to rotate the wedge shaped probe tip ninety degrees
to the flow direction (Figure 26). Since there is an equal amount of
exposed hot film on either side of the wedge, it was believed that the
anemometer could adequately measure the flow in both directions. Figure 27
18 an oscilioscope trace of the data run which shows significant improvement.
From basic waterhammer theory it is known that after the fast contrel
valve 18 closed a positive wave prcpagates at acoustic velocity back
along the pipe until it reaches the accumulator. The tluid behind the wave
is at zero velocity and at a pressure higher than the accumulator. After
the pressure wave reaches the azcumulator, the higher pressure in the pipe
causes the fluid in the pipe to flow back into the accumulator. The
indicated flows in Figure 27 are all positive because the hot film probe
cannot sense flow direction, it can only measure flow magnitude. 7The

fi-st fiow peak is a nega“ive and so is every alternate peak.




HOT FILM SENSOR

PROBE TIP

FIGURE 26. HOT FILM SENSOR ROTATED 90°

FIGURE 27, HOT FILM SENSOR DATA IN 1/2" LINE
ROTATED 90° TO FLOW DIRECTION

Flow: 27.6 CIS

Temp: 130°F

Time Scale: 20 msec/cm

Date: 30 May 75
Condition: Turn off transient
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An interesting observation on the anemometer data is the residual
flow at the first flow reversal and its gradual decay. This 1is more
prevalent in the oscilioscope photograph Figure 28 which covers a
significantly longer time period. The probe location was the same as
that in Figure 25. The initial response of the probe to the turn-off
transient should show a flow drop to zero. The small flow measured by
the probe in the position chosen shows the inability to measure zero

mean flow in the velocity profile for that position.

FIGURE 28. HOT FILM SENSOR DATA IN 1/2" LINE

Flow: 27.6 CIS

Temp : 125°F

Time Scale: 100 msec/cm

Date: 24 May 75
Condition: Turn-off transient

b. Baseline Setup and Anemometer Usage Calibration/Optimization - Assured

that the anemometer data gave reasonable answers the baseline 30 fr 1/2"
dia tube was set up in the dynamics laboratory (Figure 15). Two 18" test
stations were located up and downstream of the test specimen. Each

statinn had an anemometer and two pressure transducers.
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The first step was to perfectl align the anemometers 90° to the flow
direction. This was accomplished dynamically by running a turn-off
transient, observing the flow trace on an oscilloscope, and then adjusting
the Q1 anemometer position until decreasing square waves were measured.
Figures 29, 30, and 31 illustrate an example of this. In Figure 29 the
Q1 probe was rotated greater than 90° to the flow direction, in Figure 30
Q) was less than 90°, and Figure 31 contains the final calibration curve

for Q1.
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FIGURE 29 HOT FILM SENSOR DATA IN 1/2" LINE
BASELINE 30 FT TUBE

Q1 ROTATED GREATER THAN 90°

PRYY T

FIGURE 30 HOT FILM SENSOR DATA IN 1/2" LINE
BASELINE 30 FT TUBE
Q1 ROTATED LESS THAN 90°
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FIGURE 31. HOT FILM SENSOR DATA IN 1/2'" LINE
BASELINE 30 FT TUBE

TIP 90° TO FLOW DIRECTION

Because the short line length between the fast valve and anemometer
resulted in shorter reflection times (Figure 15), this procedure could
not be accurately feollowed for the Q4 anemometer. The entire Q4 test
station was relocated at the upstream test station for calibration

and then returned to its original position.

A steady state calibration was performed on the hot film anemometer.

A turbine flow meter was used for the flow data along with the anemometer

bridge output voltage to generate a flow vs voltage calibration curve for

the anemomater. The values of voltage and the turbine meter output of
frequency were plotted on an X-Y plotter. The graph 1s shown in

Figure 32. A dip was noted in the transition region from laminar to

turbulent flow.
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‘Aneémometer
‘Gutput, . .
4.0 DC — i

Voltzge

_ . HOT PILM SENSOR LOCATED ON CENTERLINE OF 1/2" DIA TUBE
e e e .t
b e e e — S
0.5 ) ; o T A S SN
FLOW 5 GPM . -

19.25 CIS

FIGURE 32. CALIBRATION OF Ql ANEMOMETER
TEMP 125°F

R. G. Leonard in his doctoral thesis on "A Simplified Model For
A Fluid Tiransmission Line' (Pennsylvania State University Graduate School
of Mechanical Engineering, Jume 1970), gave predicted variation in the

fluid velocity at three different locations in a line as a function of
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time following the valve closure in a waterhammer experiment. Figure 33
reproduced from Dr. Leonard's thesis shows that the fluid in the region
near the tube wall responds much faster (in that it reverses sooner)

to the reversal of the pressure gradient, than does the fluid in the
central portion of the flow where the inertial effects are more dominant.
i.e. reverse flows occur near the wall while in the central region, flow
persists toward the valve. Thus the hot film probe was shifted laterally
in the tube to obtain a better mean velocity measurement. Moving this
probe tip from the tube centerline helped to remove the dip from <“he
stealy state calibration in Figure 32 to the curve in Figure 34. The
calibration curve clearly indicates the nonlinearity characteristics of
the anemometer. Figure 35 shows the results of moving the probe too

far out of the flowstream. The transition region now begins to rise.
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F1GURE 33, PREDICTED VELOCITY TRANSIENTS AT TRREE LOCATIONS
IN A LINE DURING A WATER HAMMER EXPERIMENT
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After moving the probes, they were aligned 90° to the flow direction
before a calibration run was made. Once a smooth calibration curve can
be established, an equation was fitted to the curve and the actual data
flow rates were calculated from this relationship.

The caiibration was acccomplished by varying the load -ralve in
Figure 15 from 0 to 38.5 CIS flow and back down again. If the system
temperature was allowed to vary by more than 5 degrees a definite
temperature hysteresis effect could be observed on the calibration curve.
Figure 36 is an excellent example. If the temperature is kept relatively
constant, there is no problem in the calibration curve. For fast transients

there is little effect due to temperature variations on the flow measurements.

HOT FILM SENSOR APPROXIMATELY  .12" FROM CENTERLINE OF 1/2" DIA TUBE

l

FLOW 5 GPM
19.25 C1S§

FIGURE 3. CALTBRATION OF l)l ANEMOMETER
TEMP 12908
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HOT FILM SENSOR APPROXIMATELY .09'' FROM INNER WALL OFF 1/Z*

e DIA TUBE

s ’ FLOW 5 GPM - ,
: 0 19,25 CIs ‘

3 FIGURE 35. CALIBRATION OF Q] ANEMOMETER

TEMP 125°F

¥ After the probes were aligned and calibrated, a 125°F turn-off

transient was then run on the system. Figures 37 and 38 show the plotted
results of the flow data, Qp and Q.
The flow signal is extremely noisy for the intial steady state flow
and gradually dampens as the flow settles to zero. In Figure 37 the
flow reversals shown by the first, third, fifth, etc., peaks have a
definite flow decay, while the forward flews in the even numbered peaks
.3 indicate a flatter response.
These transient flow data were the best recorded to date. Although
it may not be the most optimal for correlation to computer output plots
of flow, it is definitely better than any flow data we measured

previnusiy, and was used in the verification of the element tedels,




3O et e e e e e e e — e
CAnememeter it —.

Gatput
. RS
. Yoltage

"HOT FILM SENSOR
©1/2" DIA TUBE

APPROXIMATELY

12" FROM CENTERLINE OF

{ o0 B l e e -
SGPM
FLOW 19.25 C1s
F1GURE 36. CALIBRATION OF Q‘ ANEMOMETER
TEMP 125°F +10°F
U N B T ; 1 HR R i T i
S | ! :j[; 'Iff;'¥ [HI—I
Sy NN RN R NEEEE SRR
,,,, i I ! P ol
| TYPICAL REVERSE FLOW S N | P
_ et R B e e e e
= : | - | Co
L il R -__W*‘;_ﬁ RERNEERE 5 |
0 IR oo ST -
W © == TYPICAL FORWARD FLOW. Lo o ; ' !
Wk T T
I l ‘‘‘‘‘ : : o o e ! o 1 1
AN X P 2
N T Tt T e ',""_7*' T T
Ve D : :
C ! ‘ s '- '
I ;YN
S v_—J_:i
]
1

TIME I }d

FIGURE 37. .5 DIA
ANEM-0)1

ILH O

el

: it S ko ey

TUBE X

SECONDS

30 P

TURN=OFF
125 DEG F

TRANSTENT

R R




S0 o T R A R N R
S ‘ S
[ S B it T T e - ]
AU ’
A S A
wlifly S Al
= ! 4‘:? . E | I i
L o o —— | e e ———
O I':‘!f::.i::‘, : . R A S R T
W I i T B e e
R N T R . ! O A
: ' R N R
[5 ' Tl e T T T T T
o Ly
C e
I ' P
S S e ~
R
_ —— e e -wntﬁ_jf—;f*f%

Nl i
D. 12D D . 200
TIME IN SECONDS

FIGURE 38. .5 DIA TUBE X 30 FT
ANEM-Q4 TURN-OFF TRANSIENT
38.5 CIS 125 DVG F

e teccs S atnd

5. ANCILTLARY INSTRUMENTATION
The pump instrumentation consists of two Standard Controls Inc. model
210-10~060-09 pr.ssure transducers for control pressure (FC) and pump outlet

pressure (PP). These units are temperature compensated, low volume, strain

gage type pressure transducers with a pressure range from 0 to 10,000 psi.
The control spool position (XC) is monitored using a variable impedance
transducer having a linear range of 0.05 inches. The unit is manufactured by
Kaman Measuring Systems. The model nuuber of the sencor is KD 2300-15. The
hanger position (XH) is measured using an SRL model KBJOO LVDT with a rated
linear range of + .50 inches.

Turbine flowmeters incorporating a free-moving suspended rotor and a signal
pickoff were used to measure the steady state flows on the test bench.

Other major instrumentation used included:

Aire-ometer - Measured the precent of dissolved air in the system.

Torque monitor - A strain gage device uscd to measure puwp drive torque.

Biomation waveform recorder — A digital sampler vsed to process the data.

Batco - Processed amplitude and phase data.

Spectrum Analyzer - Performed harmonic analysis at tent system resonance points.
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SECTTION 1V

FREQUENCY RESPONSE VERIFICATION TESTS

Development and vevrification efforts on the HSFR computer program during
the contract period are covered in this section.

Development work on the HSFR computer prugram consisted of considerable
work on the PUMP subroutine to improve and extend its capabilities. Steady
state balancing of hanger angle with computed outlet flow, inlet acoustic flow/
rressure analysis, and hanger torque analysis sections were developed. Hanger
torque studies aided in the development of an accurate pump model for the
transient analysis computer program (HYTRAN).

All HSFR subroutines were generalized to allow a common method of inputing
data for the pump and all simuiated circuit components ind linec. The sub-
routines (WHEQUT) for a Quincke tube resonator was revised. A similar subroutine
was developed to simulate a hydraulic syscem acoustic filter available commer—
cially from the PULSCO division of the American Air Filter Co. Miscellaneous
changes were made to the executive or main program to add acoustic energy
analysis, and allow user selection of the harmonic of interest and the number of
pumping pistons. The CDC program was also run on the IBM 360 system with minor
changes tc¢ literal data formats.

Program verification tests consisted of operation of an F-15 hydraulic
pump in a short (9 feet), straight, 1 inch steel line circuit terminated by
& load valve., This baseline system provided data for combined verification
of the main program, and models for the line, the pump, and valve/circuit
termination. The dynamic interaction between the pump and system load is a basic
part of HSFR program. A variable length circuit was also used in the tests.
Tests were run at 130°F and 210°F fluid temperatures with MIL-H-5606B and
MIL-H-83282A fluids. Steady state flow was varied from 0 to 20 gpm.

Original plans for component level model verificatiou called for measuring
dynamic pressure/flow magnitude and phase relationships at the component inlet
and outlet. However, dynamics {low measurements were nut accurate encugh to
permit pressure/flow phase measurements of sufficient quality for routine component
model verification., Component verification therefore consisted of mapping circuit
dynamic pressures with the component installed in the straight haseline test
circuit. Tie F-15 pump was used as the acoustic source throughout the tests,

Test data were obtained for two different component lccations in the test circuit.
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Total circuit length was held constant, regardless of the component being
tested or its location in the circuit.

Test data was compared directly to computed resulits by plotting standing
pressure waves and/or the peak pressure amplitude at a location (pump speed)
of circuit resonance.

1. BASIC HSFR PROGRAM AND PUMP MODEL VERIFICATION

This section describes the development and verification of the basic
Hydraulic System Frequency Response (HSFR) computer program. Development
and verification of the HSFR pump model 1s also included since the dynamic
interaction betweesn the pump and system load is a basic part of the
program.

Program verification encompassed operation of the instrumented F-15
hydraulic pump in a simple, straight-line test circuit *erminated by a load
valve. Verification also included the addition of a single closed end
branch line to a straight line circuit.

Test results are discussed and analyzed for the three circuit/fluid

combinations tested.

MIL-H-5606B/9 Ft. System
MIL-H-83282A/9 Ft. System
MIL-H-83282A/Tromtone System

Analog plots of selected test data are included.

Development and use of the HSFR program and pump model to study pump
hanger torque characteristics is discussed. This activity aided in the
development of apn accurate pump model for the transient analysis computer
program (HYTRAN).

Verification tests for components modeled in the HSFR program are
covered in subsequent sections.

a. HSFR Program Development

The following summarizes changes and additions made to the HSFR computer
program during the contract period, Feb. 1974 - Feb. 1977.
(1) Generalized PUMP and WHEQUT Subroutines
The PUMP was originally modeled using programmed data,  The PUMP
subroutine was later generalized to allow the required data to be

inputed along with other circuit component, line, and control input

data, The same tvpe of generalization was also applicd te the WHEOUI




(Quincke tube) subroutine. With these changes, input data
for all HSFR program models of system elements are input in the
same generalized manner.

(2) Return System, Pump Inlet, and Hanger Torque Analysis

The HSFR program and HSFR pump subroutine were utilized to study

pump hanger torque characteristics in order to improve the HYTRAN

pump model in this area. Calculation of the return system dynamic loads
was necessary, to study the effect of pump inlet load on pump outlet/
pressure system dynamics and hanger torque.

This effort resulted in a major expansion of the basic HSFR
program and pump subroutine to allow resonant frequency analysis of a
hydraulic return system, and pump hanger torque/actuator pressure
analysis. Use of these capabilities is described in the HSFR user's
manual. The HSFR technical description manual describes these
model changes in detail. The algorithm for pump hanger torque which
was developed for the HYTRAN pump model is described in the HYTRAN
technical description manual.

(a) HSFR Pump Subroutine - Inlet and Torque Analysis - The

original HYTRAN pump subroutine included hanger forces due to piston
inertia, but not oscillatory forces due to piston pressure. The
manufacturer (Abex) of the verification test pump (F-15) had indicated
that piston pressure forces were more significant to hanger torque
than inertia forces. A more complete calculation of hanger
torque was desired to correctly model pump response to changes
in load. The improved pump model needed to include hanger torque
resulting from piston inertia, piston pressure, and the hanger
spring over the entire operating range of controlled hanger (swash)
angle, pump shaft speed, and outlet and inlet pressures. Cavitation
on the inlet (suction) side and the oscillatory nature of outlet
and inlet pressures were important considerations.

It was necessary to compute piston pressure during the complete
pump revolution in order to study hanger torque characteristics.
The HSFR program basic pump subroutine already included a time

domain calculation of piston pressures during the precompression
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phase and during the pumping phase when the pump is interacting
with a dynamic system load.

The HSFR pump subroutine was expanded to include decompression,
calculation of pump inlet flow/pressure dynamics, and calculation
of hanger torques due to piston inertia, piston pressure, and
the hanger spring. The simulation technique for decompression
and inlet flow/pressure calculations is the same time-step
calculation used in the precompression and outlet flow calculations
of the basic HSFR pump model. Oscillatory inlet pressures are
naturally limited to vapor pressure on the negative side of steady
state inlet pressure. Accurate calculation of precompression
required tracking of cavitation in a piston, if it existed,
during the decompression and inlet phases of pump rotation.
Calculation of inlet and outlet total oscillatory flow was
converted from a parallel technique to a series technique in
order to provide continuous tracking of cavitation throughout
the full revolution of the pump rotating group.

Calculation of leakage from the pump case into the piston
cavity when piston pressure is below nominal case pressure was
added, while retaining the original calculation of leakage out
of the piston cavity when piston pressure is above case pressure.

(b) Input Data for Return System and Pump Hanger Torque Analysis -

Modeling and computation of return system load impedance at the
pump inlet is essentially the same as for the pressure side
of the system in the basic HSFR main program. The pump inlet is
identified as a dummy element (NTYPE = 7, KTYPE = 1). This
allows the maia program to identify the pump inlet, and to compute
and store the return system load impedance at the pump inlet.

The complete HSFR pump model has three subtypes available
for use. KTYPE 21 is used when analyzing the pressure side of
the system, i.e. no return side model. KTYPE 22 is used for
pressure side analysis, but also provides a limited pump inlet

analysis sufficient for studying pump hanger torque character-
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istics without the need for a return system model. KTYPE 23 {is
used when analyzing both the pressure and return sides of the
system.
Data for the pump is the same for all three pump subtypes.
However, for KTYPE's 21 and 22, the system data must contain only
the pressure side elements.
New pump input data added for decompression, inlet flow,

and torque calculations are

1) hanger offset (HOFF) inches

2) hanger actuator maximum displacement (DISAM) inches

3) actuator lever arm at zero angle (ACTLEVO) inches

4) pumping piston mass (PIMASS) 1b—sec2/inch
5) steady state case pressure (CPRESS) psi

6) case to suction Ap at zero case drain flow (CSPRES) psi
7) diameter of hanger actuator (DIACT) inches

The equation for calculating the actuator lever arm (ACTLEV)
at the existing hanger angle is hardmodeled and must be changed
to suit the pump being analyzed.

(¢) Pump Piston Cylinder Cavitation - Pump inlet flow simulation

showed piston cylinder cavitation during decompression at low

swash angles, as predicted by Abex. Cavitation was also predicted
during inlet port closure just prior to the start of precompression.
Transient inlet cavitation also occurred when inlet pressure
pulsations were high enough to produce vapor pressure levels,

i.e. at a return system resonance condition.

(d) Pump Hanger Torque - The HSFR pump subroutine outputs hanger

torque as control pressure (Pc) on the hanger actuator piston.
Figure 39 compares the computed and measured actuator control
pressure on the F-15 pump. Total actuator control pressure is
the result of piston pressure and inertial torque, hanger spring
torque, and pump case pressure. Note the increase in pump hanger
torque at system resonant pump speeds (2700 and 4050 rpm). Figure
39 shows pump hanger actuator control pressure computed with the

9 ft. test system model. Actuator pressure includes hanger
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spring reaction and case pressure. Actuator control pressure
is overplotted, as measured in the trombone svstem which was
tuned to produce the same resonant frequencies as the 9 ft.
test system. General correlation is quite good, especially

at resonant points.
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Mechanical resonance cf the pump compensator valve was
produced by tuning the trombone system to a natural resonance
frequency of about 1583 rpm. Peak-to-peak pulsations of 2000
psi were encountered at this condition, and measured compensator
valve motion was +.005 inch.
The high gain compensatcr valve in the F-15 pump has a relatively

low natural frequency. Smaller compensator valves in pumps with

normal (slower) respons2 could have a natural frequencv in the
pump operating speed range. Compeusator resonant {requency
is another desiygn point which must not coincide with a punp
cont inuous operating speed.

A detailed parametric studv of the F-15% pump hanger torvque
characteristics was conducted using the expanded HSFR program

and pump subroutine,
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Figure 40 shows average hanger torque at 3600 rpm due to piston
pressures as a function of hanger angle, steady state outlet pressure,
and oil temperature. Torque due to pumping piston inertial forces
are also shown. These torques along with the hanger spring act
in the direction of full stroke (maximum hanger angle). The ratio
of acceleration to pressure torques agrees with Abex's experience.

The Shuttle (F-14) Abex pump was then modeled in the verification
test system to analyze its torque characteristics. Torque character-
istics computed by the F-14 pump model are plotted in Figure 41.

Average hanger torque is very sensitive to the pre-compression
and decompression pressures, since these pressures act on the hanger
at the maximum moment arm via the pistons.

Hanger torque is not significantly affected if the pump
inlet flow is computed without dynamic balancing of the inlet
flow to the return system load. This allows a hanger torque study

co be conducted without having to model the return side of the

system.
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(e) Effect of Pump Inlet Modeling on Pressure System Pulsations -

Figures 42, 43 and 44 show the results of computing oscillatory
outlet pressure at the F-15 pump port plate with three different
pump inlet models.

The F-15 PC-1 return system is modeled in the same manner
as the pressure svstem, as illustrated in the Volume ITII user's
manual. TFigure 42 shows the computed peak oscillatory osutlet
pressure using a constant pump inlet pressure, i.e., constant

pressure at the start of the pra-compression phase.
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Figure 43 shows tne same calculated outlet pressure at the
port plate except that a pump inlet flow/pressure analysis is

performed based on the inputed constant inlet pressure. This is

done by selecting a pump KTYPE = 22,
in the initial pressure at the start
Figure 44 shows pressure at the

a complete dynamic balancing of pump

and results in some variation
of precompression.
pump port plate outlet with

iniet flow and return system

load. The inlet analysis is made in the same manner as for the

outlet flow,/'pressure system load. Figure 44 also shows the predicted
oscillation pressure at the port plate inlet. Note that the return
system has a predicted resonant response at three pump speeds,
which are not related to the resonant responses of the pressure
system. Verification of inlet system pulsation predictions were
not in the scope of the contract. The 400-700 psi peak pulsations
predicted in Figure 44 are probably high. However, predicted
return system resonant frequencies are probably as accurate as
pressure system predicted frequencies.

()
predicted by the HSFR PUMP subroutine for the F-15 Abex pump. The

Pump Precompression: Figure 45 shows typical precompression

plotted pressure is the pressure in the piston cylinder at the
end of the precompression phase, just before the cylinder cavity

communicates with outlet slot in the valve port plate.
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(3) Miscellaneous HSFR Program Mcdel Developments - Misce!laneous

changes and additions made to the HSFR main program and subroutines
are listed below.

HSFR Main Program

1) Harmonic of interest selected by input data
2) Acoustic energy analysis capability added
- Density plots (milliwatts/ina)
- Intensity plots (watts)
3) Number of pumping pistons (elements) variable by input data

4) Program run on IBM 360 systen

- changed end of file (EOF) statement
- changed literal data formats

CcDC IBM

: 8A10 10A8 (Real *8)
8A10 20A4

5) Pressure/flow phase angle calculation corrected

{ 6) Writing of selected output plots corrected
E PUMP Subroutine

1) Added cteedy state balancing to pump subroutine
- balances hanger angle (at rated outlet pressure)
- balances cutlet pressure (at maximum hanger angle)
2) Improved sensitivity of pump steady state balancing
; 3) Modified piston leakage factor for pump inlet flow calculation
~ required to stabilize inlet flow calculation
4) Predefined output plots for studying pump hanger torque,
precompression, decompression

WHEQUT Subroutine

1 Revised, made corrections to, and ran Quincke tube subroutine
(WHEQUT')
b. HSFR Pump and Basic System Model Verification - Tests were run on two

basic test circuit configurations with MIL-H- 5606B and MIL-H-83282A fluid.

Fach of these test series is discussed separately in this section.
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(1) Test Set-ups and Circuit Models - Figure 46 is a schematic of

the general test circuit used for frequency verification tests. The
set-up was essentially the same as used for transient tests. The
frequency analysis section of the test circuit is shown in more
detail in Figure 47 and 48. Figure 47 shows the detailed dimensions,
instrumentaticn, and configuration of the short, straight, frequency
test section (9 ft.) between the pump and load valve. Details of the
suction system between the reservoir and pump are also shown. Input
data for the short line verification circuit is shown in Figure 49 as

an output of the HSFR program.
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Figure 48 shows the details of the trcmbone frequency analysis
test section. The sliding tube permitted the length of the test
section and its resonant frequency to be varied with ease. Input data
for the trombone verification circuit is shown in Figure 50.

(2) Processing of Frequency Response Data -~ Digitizing of frequency

data through the Bicomation waveform analyzer and plotting through the
Wang calculator did not produce satisfactory pressure/rpm sweep plots.
The basic problems were accurate synchronization of time and rpm
signals, and poor resolution due to the long sweep time (one minute).
Time did not permit the pursuit of a more accurate method of digitizing
frequency response data. Therefore, direct automated overplotting of
measured and computed results was not available for frequency response
test/model verification.

Overplots were made by manually plotting measured data directly
on a reduced computer output plot. Overplots were also made bv scaling
an analog plot on mylar to the computer nlot size, then overlaving
the mylar plot on computer plot for shooting a final master. Since
manual overplotting is very time consuming, direct comparisons of
measured and computed frequencv response data is kept to rhe minimum
nccessary for basic HSFR program verification. Manual plotting and

reproduction distortion introduce some error.
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{(3) MIL-H-5606B/9 I't. System Tests - TFigures 51 through 54 show

overplots of measured and computed peak pressure pulsations at the
inlet of element #9, i.e. Pl in the 9 ft. test circuit. Tnese figures
show fundamental frequency pressure pulsations for 0, .5, 2., and 10. gpm
steady state flows, respectively. Test conditions were 130°F oil
temperature and 3000 psig steady state pump outlet pressure.

Frequency correlation is about 0-27% (0 to 100 rpm) for the 2nd
and 3rd resonant speeds. A 27 correlation is good considering possible
errors due to temperature shift during the run, circuit length evrors,
and fluid property and instrumentation errors. Prediction of the first
resonant point appears to be about 200 rpm too low. However, this first
predicted resonant point is below the natural frequency of the pump
compensator valve, as determined during the test series. Measured
pressure response below the valve natural frequency (1500 rpm) is washed
out, and therefore does not correlate to the computed first
resorance, since compeasator dynamics are not modeled.

Resonant frequencies of the 9 ft. test circuit are consistent
with theory for a line terminated by a fixed orifice, and are only
partially dependent on the flow at the load valve.

Measured and predicted resonances correlate well to that computed

for the total line length from the pump port plate to the load valve.

_ 20
N = 3 (fl)
where: f1 - %L for a half-wave characteristic
N = pump speed (rpm)
fl = fundamental frequency of circuit (cps)
c = acrustic velocity in fluid
= 53,113 in/sec at 130°F
L = circuit length (in)

= 124.1 in.

Harmonic responses (f?, fg"") occur in multiples of the fundamental
frequency. Predicted pump speed for the fundamental resonance of the
9 ft. test circult {s 1300 rpm. This is consistent with measured 2nd,

and 3rd resonances of 2550 and 3900 rpm.
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The computed standing pressure wave at the 3900 rpm resonance point
is pleotted in Figure 55 for each of the various test flow rates from
0 to 20 gpm. Measured values at "P1" are also plotted. Pressure
amplitudes, computed and measured, decrease with increasing flow even
though pump studies indicate that precompression/outlet pressure
mismatch increases as the hanger angle increases. Decreased termination
impedance as the load valve is opened to higher flows reduces the acoustic
reflections at the valve such that there is a net reduction in the
standing wave amplitude. An increase in pressure amplitude with increasing
flow has been observed in a long linz simple test circuit and in multi-
branch aircraft systems. Note that the standing wave location, i.e.
resonant frequency of 390C rpm, is unaffected by the steady state valve

flow rate. The oscillating pressure amplitude at the "P1'" instrumentation

point location was about 1/2 maximum for the 3rd (3900 rpm) resonance

point, and near zero at the 2nd resonance point (2550 rpm).
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FIGURE 55 FREQUENCY RESPONSE
F-15 PUMP VERIFICATION TEST - SHORT (9 FT.) LINE
STANDING PRESSURE WAVE FOR RESONANT
FREQUENCY AT 3900 RPM



Figure 56 shows the effect of oil temperature on system resonance.
The 3rd resonant speed was decreased from 3900 to 3500 rpm for an oil
temperature change from 130°F to 210°F. This shift brings the
4th resonant frequency into the range of the plot.

Figure 56 also shows the effect of modeling the pump and pump
manifold as a volume instead of a line. The change reduced the accuracy
of predicted amplitudes and frequencies. Figure 57 shows a comparison
of computed and measured pressure pulsations for the 2nd multiple of
the pumping frequency at 0 gpm and 130°F. This is entitled harmonic
number 2 on the computer plot, although more conventional terminology
would refer to it as the lst harmenic of the fundamental frequency.
Frequency correlation is about the same as for the fundamental frequency,
however, amplitude prediction is less accurate. Measured response '
at 3800 rpm was apparently tco sharp to be plotted with a plot increment
width of 50 rpm. Second harmonic coutent (at 1950 rpm) was abcut 120
psi at the frequency of the third circuit resonance (585 hz). Howevar,
much higher pressure (500 psi) was generated when the pump operated
at 3900 rpm providing a rundamental pumping frequency of 585 hz, i.e.

the third circuit resonance.
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(4) MIL-H-83282A/9 Ft. System Tests - Figure 58 shows an overplct

of computed and measured fundamental pressure at the "P1" location

for a 2 gpm flow and 130°F o0il temperature. Computed response 1is

based on fluild properties derived from Air Force Report AFML-TR-73-81.
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Measured resonant frequencies with MIL-H-82782A fluid in the test

stand were 200 to 300 rpm lower than those predicted by the HSFR program.

Rockwell International reported similar lack of correlation in their
HSFR analvsis and testing of the shuttle orbiter hvdraulic svstem. MCAIR
belleves that the error is primarily the result of adaibatic bulk
modulus data used in the FLUID subroutine, which was based on the APML
report. The report values were computed {rom measured isothermal secant
bulk data. Figure 39 compares measured results for both oils in the

same 9 ft. test svstem with identical test comditions. This indicates
that the bulk modulus for 33282 il is slightlv higher than

tor MIL-H-,606B ofl.
Onlv twe sources of bulk modulus data for the 83282 fluid

are known at this time.
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Air Force Materials Laboratory (AFML)

Isothermal secant bulk modulus was measured at 100°F for
pressures from 0 -~ 10,000 psi at Penn State University under an
Ailr Force contract. The AFML used Penn State data from four samples
of early formulations of the 83282 fluid to compute adiabatic
tangent bulk modulus for various temperatures and pressures. Values
computed by the AFML were published in Ref (a).
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National Research Council (NRC) of Canada

Adiabatic tangent bulk modulus is determined directly from acoustic
velocity measurements. NRC data for MIL-i-83282A (Hanover Chemical Co.)
and red oil (sample unknown) are presented in Figure 60. Table 1
compares computed results with the two oils using various data sources
for adiabatic tangent bulk modulus. Computed frequency response is
compared to the measured response for the resonant speed in the
3600-4200 rpm range. Predicted resonant speed is more accurate
with the NRC data for MIL-H-83282A o0il, i.e. about 100 rpm high at
130°F. Predicted resonant speed using the red oil bulk data (NRC)
for MIL-H-83282A 1is only 50 rpm higher than the measured value at 130°F.

In May 1976 there were four approved suppliers for MIL-H-83282A
fluid; Mobil, Royal, Hanover, Bray. MCAIR verifications tests have
been run so far with the Royal fluid. The MCAIR hydraulics lab also
has Mobil fluid in stock. Until new data is available on MIL-H--83282A

fluid, red oil bulk data (NRC) is recommended for HSFR analysis.

V— = v i~ »
REF: NRC REPOR'I" M»T-7.:79'
24 JUNE 1972
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MLO 7261 AND MIL-H-5606
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TABLE |

COMPARISON OF FREQUENCY RESPONSE
PREDICTIONS WITH VARIOUS BULK
MODULUS DATA

Resonant Speed/Amplitude (RPM/PSI)

MIL-H-5606B 130°F 210°F

TEST 3850 rpm/410 psi 3525 rpm/320 psi
COMPUTED 3900 /540 3500 /310
NRC data (223,000 psi) (173,000 psi)

bulk modulus

MIL-H-83282A

TEST 3900 /360 3600 /250
COMPUTED
AFML data 4150 /600 3850 /480
(250,000 psi) (195,000 psi)
NRC data 4000 /420 3750 /540
(232,000) (184,000)
NRC data 3950 /560 3650 /480
for MIL-1}-5606B (223,000 psi) (173,000 psi)

(5) MIL-H~83282A/Trombone System Tests -~ Figure 61 compares

and measured peak pressure pulsations in the trombone system
inlet to element number 5, i.e., Pl in Figure 48. The error
predicted frequency is the same as for MIL-H-83282A fluid in
system. Predicted amplitude is about 90% above the measured

for the 3rd resonant frequency,.
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Figure 62 shows computed snd measured pressure at the closed
f;v end of the test section. Results are consistent with those on the
other test system and at the Pl Jocation, Axial acceleration
levels at the closed end of the circuit were measured to verify
the assumption that dynamic flow is zero at the end of a closed
branch. Accelerometer (Al) readings are shown in Figure 63. Axiul

3 "g" level was less than 12 g's at the resonant speed of 3550 rpm.
1008.08 @< -cnvectemancncattoctacortubonaner vmabessmmmauad svrnromvobosirnantatanmatansy besveccona tanaicanan
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FIGURE 62 COMPUTED VS MEASURED P6 PRESSURE
FREQUENCY RESPONSE
F-15 PUMP VERIFICATION-TROMBONE
MIL-H-83282 DATA PER AFML-TR-73-81
3000 pSI, 210°F, 0.5 GPM
CLOSED END OF TROMBONE

c.  CONCLUSIONS

1) System resonant frequency locations predicted by the HSFR program

are accurate within about 2% (100 rpm in 5000 rpm) for a simple short line
system.

2) Predicted amplitude of oscillating pressure at system resonant frequencies
range from 0 to 30% high, i.e. above actual measured pressure pulsations.

3) The accuracy of predicted pressure amplitude at system resonant frequencies

decreases for 2nd and higher harmonics of the pumping frequency.

64

i
gt IR




ek U bt PR £ o LY

50 B . Voo T4 xl..T..f... Y;.I b ‘ )
!‘:'il’!.:" ,.';‘::'1"'::|H'.‘;.,.
):.-? R ]! |1,‘ ‘{IL;‘ l|i Vot |
. . ] boe I |..[...; ‘ . o i
3::'::":1H u'!I;f?':Zi!;i‘l:;:..,..i'
N ;,".I i N H "'*lll"‘x"' [ ‘
- LIO ! . . R . ] T =
< 1 ' .l«. oy l|!f!".|l:'::1""'
[ + oot [ L | 1. R :0 l Il
i V- l cp Lo b ..!. : . A '
' i . . 4 v.<‘:t.-;.|:: . I'
5 IR BT EERERSE S PSSR | N R
-_— ' I .{,;. Ve ' . ' 1 RS :':E . o s '
x 30i P ! I!":‘:'I:f: |, I
. . [ SR I \ A ' : G e e
o LR T . . bocie e d b e e e . AI. - ;
j : ! PUEN T i e i.x,f : ...|. i EEREEE
; NS . i T i :
o S S ! ;
-t Zor . - s 1.: .,,: :“=,
.o : [ BT .
. L P RO S R
x A R EA LS
- R :..:.it. S
a, T I S )
':T:A;::!:‘;l.‘.!
- bl :
p RS S SR
= oo - JOTR T

PUMP kPM X 1000
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7.7 CIS, 102°F

4) Predicted and measured amplitudes of resonant pressure level decreased
with increasing steady state flow from O to 10 gpm in the simple short line
test circuit. Reduced reflections at the load valve as flow was increased
resulted in a net reduction of standing pressure wave amplitude, even though
pump predicted pre-compression characteristics degrade with increasing flow
for a given shaft speed. An increase in pulecations with higher flow, i.e.
the opposite effect, is observed in a single long line test circuit and in
full scale iron bird systems comprised of multiple long-line branches. Pump
precompression is apparently more significant to pulsation levels than is
the change in dynamic load with increasing flow in a long line multibranch
system.

5) Resonant frequency locations were unaffected by the pump steady state
flow level from O to 10 gpm in the short line test system.

6) An 80° increase in oi! temperature decreased the system resonant frequency
locations by about 400 rpm (pump shaft speed).

7) The internal outlet passages of the F-15 pump port cap and manifnld
should be modelec as lengths of line (outlet size) rather thau as a lumped

volume.

65




L ACIEUR AR ST S LA} Kol SR Re VRTINS ATIYY ST TR TP, G LA ALY N O
LR v‘)m* LS i !

RPN RS ALV FPERARGIAAV I L VIS SN R UNR R ST ENLOA- SRl AN A4 hanaiony

l':!-""l w }\!{I‘T.l‘»\,‘ 7‘\‘(_"\ HOARA TR

B) The use of adaibatic bulk modulus daca for MIL-H-5626B hydraulic fluid
io recormended whea pevforming BESFR analysis of systems using MIL-H-85282A
fluid. The FLUID subroutine is curreatly programmed in this manner.

9) The HSFR program/PUMP subroutine can be usad effectively to study

pump hanger torque, port plate valve timing, and piston cylinder cavitation
characteristics. Model predictions indicate tha* the F-1% pump has good
overall precompression characteristics throughout the operating range

of shaft speed and flow delivery, especially wher considering the many

variables involved. Predicted decompression resuits in a slight
W cavitation condition in tpe cylinder for all flow rates up to 40 gpm.

Such a characteristic is probably good in that acoustic scurce energy in

the return syytem is relatively constan- regardless of operating conditions.
10) The HSFR program may be used to study resonance characteristics of a
hydraulic suction/return system. However, return system frequency analysis
was not part of the contract scope, and is not verified. The accuracy of
resonant frequency predictions in the return system should be reasonably
good, owing to the use of the same computation method and models as are

used for pressure system analysis. The accuracy of predicted amplitude

for return system resonance is unknown. Additional pump model development
may be required to more accuractely represent case to cylinder leakage during

the suction phase of the barrel revolution.

2. PULSCO ACOUSTIC FILTER MODEL VERIFICATICN

,& This section covers the development and verification of an HSFR computer

program model for a hydraulic system acoustic filter designed and manufactured
by the PULSCO Division, American Air Filter Co., Louisville, Kentucky. The
test unit is identified as Model ATP-1, P/N 206001-003G, S/N 453. The basic
ATP-1 design 1s sized for and used in a 10 gpm system on the L-1011 commercial
transport. Stedady state AP is about 100 psi at 10 gpm.

Tests were run in the 9 ft. straigh-line test circuit used for verifica-
tion of the basic HSFR program and F-15 pump. Two test unit locations were
used; unit mounted near the pump manifold outlet port, unit mounted 3 1/2 ft.

downstream of pump outlet port.
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A math model of the PULSCO device was derived as shown in Figure 64. The
unit 1s represented as three lumped volumes and three lines, interconnected as
two parallel flow paths. The model is derived by combining the dynamics of
three basic HSFR program elements; lumped volumes, lines, and branches. The
2 x 2 matrix equation relates dynamic pressure and flow across the unit. A
detailed derivation of the model is contained in the HSFR technical description
manual, AFAPL-TR-76-43, Vol. 1V.

The math model technique is the same as used for the Quincke tube model

(WHEQUT subroutine).

LINE D— VB~ [~ LINEF
VOLUME VAK(H L I:___—lL:’:l
— — : - —
T
— - J ve
Liinee

QA1,PA acz, PC
—— 7 T —

W\
G11 Gig] [ca1 ac?]
G271 G22] [ PA PC |

FIGURE 64 PULSCO HYDRAULIC ACOUSTIC FILTER
COMPUTER MODEL FOR HSFR PROGRAM

Figure 65 is a simplified schematic of the verification test set-up show-
ing the two PULSCO unit locations for which tests were run. Tests were run
with MIL-H-83282A fluid. Figure 66 is a listing of innv: data for the test
set-up with the PULSCO unit in the upstream position.

Design cut-off frequency for the ATP-1 is 800 Hz (5333 rpm). Cut-off
frequency is defined as the frequency above which attenuation of pressure
pulsations is 90% or higher, i.e., the pressure pulsation level transmitted
downstream of the unit is less than 10% of the input level. Direct verifica-
tion of this characteristic would require testing of the PULSCO unit in a

circuit with a low termination impedance, i.e., minimum reflecting at the

termination.
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PULSCO (APT-1) HAND VALVE (2 GPM)—/®

PUMP OUTLET

PUMP MANIFOLD
F-15 INSTRUMENTED PUMP

LINE —16 x 0.058 SS
FLUID MIL-H-83282A

CONFIGURATION IT

! 42 IN. i i 73.6 IN. l

A %Y
PULSCO (APT-1)

FIGURE 65 PULSCO ACOUSTIC FILTER FREQUENCY
VERIFICATION TEST SET-UP

RESPONSE IS CALCULATED FmOM 30,00 TO  3000.00 R Pon, IN INCREMENTS OF 30,00 R.P.N.
RESPONSE IS PLOTTED FOR THE =FIPST= WARNONIC FREQUENCY
NUNBER DF PURPING FLERENTSe .

FLUTD OATA FOR MIL=N=03202 AT 3600.0 PSIC ANO 130,0 086 ¢

s Iy = «200£=01 Nes2sSFL
H UM 15 (NS U

m:".ll SYSTEN ELEMENY INPUT OATA
",. '5" erefsericrrssucasusstecacaetssrsennvecacecttasecePHYSICAL DATALcevancsnnnssassnoncnnancasaceatoressoseanseses
1 * n 190 « 000 1120 1.7 0% «370 100
+20000 1¢.30000 3.60000 3.37300 2075000 26,293000 20.00000 1. 15000
$0.00000 «08000 « 70000 2.07000 «00062 43.00000 1%0.00000 200000
] 1 -0 8,000 1.200 »100 30000000.000 «0.000 -0.000 =0.000
] 1 = 23500 1,200 +100  30000000.000 =0.000 ~0.000 «0.000
L] 1 =0 3800 1.000 +03%8  30003000.000 =0,000 =0.000 =0,000
9 @ 222 $.243 2.273 =0.000 =0.000 =04000 «0,000
4.93000 +31000 +»1000010000000.00000 =0.00000 «0.00000 =0,00000 -0.00000
3443000 +33700 +1000010000000.00000 =0.00000 ~0.00000 =04 00000 =0,00000
3:43000 25700 +1000610000009.00000 =9.00000 ~0+.00000 *«0.00000 ~8.00080
L] 1 =0 T.000 1.000 «038  30000000.000 =0.000 =-0.,000 -0,000
? [} 1 ~0.000 ~0.000 =0, 000 =0.000 «0.000 =0.070 *0.000
L} 13 -0 «1%0 0,000 -0.000 =0.000 =0.000 -0, 000 =0.000
* 1 =0 11.300 1.000 +038  30000000.000 «0,000 -0,000 0,008
1 1 -0 12.000 1.000 +038  30000000.000 =0,000 ~0,000 =0.000
11 1 -0 12,000 1.000 «0%80  30000000.000 =0.000 «0,000 -0.008
12 1 -0 12,000 1.000 +030  30000000,000 =0.000 =0.000 «0.908
1] 1 =8 12,000 le000 «038  30000000.000 =0,000 0,000 =0.000
11 1 =0 12,000 1,008 + 038  30000000.000 =0.000 =0.000 =0.000
1 1 -0 12,000 1.000 +0%8  30000000.000 =0.000 =0.000 ~0.000
18 1 -0 12,000 1.000 «0%%  30000000.000 =04000 ~0.000 -9.000
17 1 =0 439y 1.000 «038  30000000,000 -0.,000 -0.000 8,000
1s 1 =2 4,000 1.000 +058  30000000.000 ~0.000 =0,000 -0, 900
19 s «0 700,000 T.700 =0.000 ~0.000 =ve000 =2. 000 -0.000

FIGURE 66 HSFR INPUT DATA FOR PULSCO TEST CIRCUI Y
HYDRAULIC SYSTEM FREQUENCY RESPONSE PRe:IRAM

The MCAIR verification effort demonstrated the net effect of the PULSCO
unit in the basic short line (9 ft) HSFR test circuit. Termination impedance
at the load valve is relatively high, and better simulates a real hydraulic
system where a downstream pressure filter/manifold results in major reflections

of incildent pressure pulsations.
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a. Test Results and Model Verification - Figure 67 shows the basic

response of the basic 9 ft. test circuit, as shown and discussed in
Paragraph l.a. Measured resonances occurred at pump speeds of approxi-
mately 1350, 2600, and 3900 rpm. Peak standing wave pressure at the
3900 rpm resonance speed is about 525 psi.
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FIGURE 67 COMPUTED VS. MEASURED P1 PRESSURE
FREQUENCY RESPONSE
F~15 PUMP VERIFICATION TEST - SHORT LINE
: MIL-H-83282 DATA PER AFML-TR-73-81
; 3000 PSI, 130°F, 2 GPM

Figure 68 shows an overplot of predicted and measured pressure pulsa-
tions (fundamental frequency) at the pump port plate outlet with the PULSCO
unit installed close to the pump in the same 9 ft. test circuit. Fluid tem-

perature was 130°F, and steady state flow was 2 gpm. Predicted response is
based on adaibatic bulk modulus data for MIL-H-5606B (See Paragraph 1).

By comparing Figures 67 and 68, the PULSCO device obviously alters

3 the acoustics of the test circuit. Resonant frequency location is shifted

R

and maximum pulsation levels are reduced by an order or magnitude (525 psi

peak to < 50 psi peak), both upstream and downstream of the test unit.

Reduction in measured pulsation levels occurs for pump speeds from

1000 to 5000 rpm. Figure 69 shows the same comparison of predicted and

measured response with the PULSCO unit at the downstream location. The
pulsations are reduced significantly from the basic circuit, although not

as much at the upstream position (1/4 vs 1/10).
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P 1 PEAK PRESSURE - LB/IN.2 vs PUMP RPM FOR HARMONIC NUMBER 1
FIGURE 68 PULSCO FREQUENCY VERIFICATION PUMP OUTLET FRESSURE
CONFIGURATION I (UPSTREAM LOCATION)
3000 PSI, 130°F, 2 GPM

Figure 68 shows that predicted amplitudes at the pump outlet are good
for pump speeds above about 607 of the design cutoff (5333 rpm). By exami-
ning computer plots for several locations, low amplitude resonances were
predicted at pump speeds of 850, 1650, 2650, 3100, and 4500 rpm. Analog
plots of measured data show resonances at 1000, 1600, 2800, and 4400 rpm.
Maximum peak pressure in the test circuit over the speed range is 55 psi
(1600 rpm). Predicted amplitudes at the lower frequencies are considerably
higher than measured values.

Note that resonance points are different than for the basic circuit
without the PULSCO unit.

Figure 69 shows that the location of PULSCO unit relative to the pump
is significant. It is less effective at the downstream location partic-
ularly for speeds below the 60% cutoff value. Resonances are predicted
at 750, 2050, 2650, 3100, and 4450 rpm. Resonances were measured at
1300, 2050, 2400, 3200, and 4300 rpm. Measured amplitudes are still
< 100 psi above the 60% cutoff speed (3200 rpm). Maximaum amplitudes at
< 60% of cutoff speed is 150 psi. Amplitude attenuation 1s evident for

pump speeds above 3200 rpm. Pressures downstream of the unit are less
than 40 psi, while upstream pres3ures range up to 150 psi. Predicted

maximum amplitudes are 180 psi downstream and 350 psi upstream.
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FIGURE 69 PULSCO FREQUENCY VERIFICATION PUMP OUTLET PRESSURE
CONFTGURATTION I1 (DOWNSTREAM LOCATION)

Figure 70 compares predicted peak pressure pulsations for the basic
9 ft. tesc system, a volume element at the pump, and the PULSCO element
at the pump. The volume was equivalent to the total volume of the PULSCO
unit, 10 in3. This comparison shows the significant effect of the PULSCO
design over a simple volume. Maximum attenuation agrees with the design
cutoff frequency (5333 rpm). The apparent natural frequency of the unit
is about 2X cutoff (approximately 10,500 rpm). Figure 71 compares pre-
dicted circuit response with the PULSCO test unit, two scaled up sizes of
the test unit, and a large commercial PULSCO unit (ATP-6) used in the
transient model tesc circuilt. All are effective in the using range to
5000 rpm, and unit natural frequency decreases with increasing size.

The effectiveness of the PULSCO unit was also verified in a real
system (F-15 iron bird left utility system) under a separate effort. The
unit was installed as near the pump as possible. Figures 72 and 73 com-
pare the actual system pressure pulsations before and after installing the
PULSCO unit. Results are consistent with the bench test verification results.
b. Conclusions - The HSFR computer program and the model of the PULSCO
acoustic filter can provide useful predictions of circuit frequency
response when the PULSCO unit is installed in a simple short line system.

Prediction of maximum pulsation amplitudes is good for circuit
resonant frequencies above about 60% of the attenuator design cutoff fre-
quency, Predicted amplitudes for circuilt resonances below 60% of cutoff

are several times measured levels,
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3. F-15 UTILITY FILTER MANIFOLD VERIFICATION

This section covers verification testing of the HSFR filter model.

Figure 74 shows the test circuit schematic. A pressure filter in the main
supply line is usually the first point in the hydraulic system for major
acoustic reflections. Proper simulation of the filter 1is therefore quite
important in predicting the standing pressure wave in the system upstream and
downstream of the filter.

The test filter consisted of a production unit as installed in a F-15
utility system manifold (S/N Q103). The manifold inlet check valve was removed.
The trombone section was included in the downstream circuit so that the impe-
dance of the circuit downstream of the filter could be varied. Test fluid was
MIL-H-83282A hydraulic oii.
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FIGURE 74  F-15 FILTER MANIFOLD HSFR
VERIFICATION TEST SETUP
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Figure 75 shows the input data used to modzl the filter test circuit for
run 68-09. The filter is represented as a lumped volume. Volume with the
filter element installed was measured at 12.82 in3.

Figures 76, 77, and 78 show typical recorded data for three test condi-
tions. Fundamental and total pulsation pressure response is shown in each
figure.

Figures 79 through 82 compare predicted ard measured standing wave plots
in the test circuit.

Figures 79 and 80 show comparisons for lower frequency resonznces at oil
temperatures of 100°F and 210°F, respectively. In both cases, the filter was
located near to the maximum pressure of the standing wave by adjusting the
manifold outlet total length to 75 3/4 inches. Amplitude correlation is good
for these low frequency resonances. The standing wave shape is maintained

’ across the filter. Test data indicates some distortion of the wave across the
"T". The test and computed data are plotted against axial line lengths as
measured to the center of the "T".
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FIGURE 75 HSFR INPUT DATA FOR THE F-15
FILTER MANIFOLD TEST CIRCUIT
HYDRAULIC FREQUENCY RESPONSE PROGRAM
F-15 FILTER MANIFOLD VERIFICATION TEST
SHORT TUBE SETUP
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Figure 81 compares standing waves for a higher resonant frequency of
3500 rpm at 100°F, Predicted amplitudes are several times higher than measured
values.

Figure 82 plots the standing wave for a system resonance at a pump speed
of 4550 rpm, and an oil temperature of 210°F. For this resonant frequency,
the filter is at or near a minimum pressure (maximum flow) point. This was
achieved with a manifold outlet to trombone tube length of 31 inches (Fig-
ure 74). Predicted resonant frequency was 4800 rpm. Both measured and pre-
dicted results show a significant reduction of pulsation amplitude across thes
filter. However, computed amplitudes are 2 to 3 times higher than measured
values.

Resonant frequencies are generally somewhat more in error than that
typically predicted for a simple straight line circuit, and may be due to

inaccurate representation of internal passages in the filter manifold. The

high amplitude error at the higher frequency appears to be associated with pump

speed, not temperature.
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4.  F=-4 RESONATOR VERIFICATION TESTS
The lumped volume type resonator used on the F-4 hydraulic pumps was
installed and tested in two different. positions in the HSFR test circuit.

Figure 83 shows the test circuit schematic for each resonator location.
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FIGURE 83 T-4 RESONATOR
Y'SFR VERIFICATION TEST SETUP
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Figure 84 shows the computer input data used for simulating the test circuit
with the upstream resonator location. The resonator is simulated as a lumped
volume at the end of a short branch line.

Figures 85 and 86 shows typical fundamental frequency response in the
test circuits for upstream and downstream resonator locations.

Figures 87 and 88 compare computed and measured standing pressure waves
for a circuit resonant condition at each resonator location. Amplitude pre-
dictions are not consistent upstream and downstream of the resonator for the
downstream installation (Figure 88). Pulsations downstream of the resonator
are about the same (200-250 psip) for both locations. However, the downstream
location results in significantly higher pulsations between the pump and
resonator.

Figures 89 and 90 show standing wave peak pressures in the test circuits
for the fundamental frequency. Resonant frequency prediction is good.
Amplitude predictions vary from low to high, but the error is considerably

less than for filter and hose tests.
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FIGURE 84 HSFR INPUT DATA FOR F-4 RESONATOR VERIFICATION
HYDRAULIC SYSTEM FREQUENCY RESPONSE PROGRAM
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5. FLEXIBLE HOSE VERIFICATION

Figure 91 shows the test circuit schematics for verification tests of a
1 inch flexible hose at two different locations in the test circuit. The test
unit was a Resistoflex steel braided hose, P/N R44597A02C4HK, 20 inches in
lerngth. Static measurenents of equivalent bulk modulus were made on the hose
test specimen. These data are plotted in Figure 92 as total volume change vs.
pressure. Total effective bulk modulus of the hose and oil is approximatley

_ AP+V _ 3100(124)
e AV 4.69

81,962 psi.

B

B
e

UPSTREAM LOCATION

r
—

F15 R44151P-16 AN TO DYNATUBE UNION
HYD T/CNO.4
PUMP P2 (ROVING
LJ A P/ TRANSDUCER)
-P%\J {ff X

B TO RETURN N rzsffl'” —
El SUCTION ’-_-B:‘J L[U]J [[[]

' T

IN—RESISTOFLEX STEEL BRAIDED P3 J

|  HOSE P/N R44597A0204HK ] 112

| | '

| j——3.63— 89.00
20.00 _
Note: All dimensions in inches
DOWNSTREAM LOCATION
b 285.13
TO RETURN
SUCTION 1 I
L o5 i
F16 P2 (ROVING TRANSDUCER])
HYD RESISTOFLEX HOSE
PUmMP oy /- T/CNO.4
T r s ,
] L[ﬁJJ U 1 ) [ﬁ: X @
R44151P-16 AN TO l 93U
DYNATUBE UNION ! L_ | 112
55.62 , - 3.87 =—33.12

20.00

Note: All dirnensions tn inches

FIGURE 91. HSFR HOSE VERIFICATION TEST CIRCUTTS
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Line subroutine models a hose as a line with a local acoustic velocity
based simply on the effective hose bulk modulus. The above estimate of effec-
tive hose bulk modulus is based on an average volumetric change from O to
3100 psi and could be considered as isothermal secant value. The HSFR program
typically uses adaibatic bulk modulus for the fluid with modifications to
acoustic velocity for line wall material elasticity and mounting. However,
the choice of a modulus value for hose simulation is academic considering the
difficulty of statically measuring hose modulus, in addition to inherent dif-

ferences in static and dynamic hose response.
Figure 93 shows the input data used for simulation of the circuit with

the upstream hose location. The hose was modeled as a lumped volume at the
middle of the hose length in the example data.

Figure 94 shows measured and computed maximum first harmonic peak
response in a straight, 1 inch diameter x 128 inches long line circuit.
Frequency predictions are quite accurate. However, predicted amplitudes at

resonant frequencies are all much lower than measured values.
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Figures 95 and 96 show typical measurements of fundamental frequency peak
pressure response Iin the test circuit for upstream and downstrcam hose loca-
tions, respectively.

Figure 97 cumpares peak circuit response with the hose located near the
pump outlet. The hose results in a significant reduction of pulsation pressure
amplitudes from those of a straight line (600 psip vs 150 psip). The hose cir-
cuit has several low level resonances at the lower frequencies which do not
appear in the straight line circuit. This indicates that the hose is acting
as a reflection point, an effect which is not predicted.

Pressure predicted with the measured hose bulk modulus (81,962 psi) do
not reflect the reduced pressures. Lower amplitudes (200 psip) are predicted
using a bulk value of 10,000 psi, however significant resonant frequency errors
remain, as well as a high amplitude error at the higher frequency. The high
predicted amplitudes are similar to the errors in predictions at the higher
speeds in the filter verification test.

PUMFP RPM X 10920

FIGURE 95. STEEL BRAIDED HOSE UPSTREAM LOCATION
74-01-PP FUNDAMENTAL
2 GPM 130°F
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Figure 98 compares peak circuit responses for the hose located in the
downstream position. Errors in predicted amplitudes are about the same as
for the upstream position. Double resonance points are evident, probably

resulting from two lengths in the circuit; pump to hose, hose to valve.
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MIL-H-83282 1306°F 2 GPM

Several factors were investigated in an attempt to explain the large

3 errors in predicted amplitudes for the hose circuit at higher speed resonances

(2500 to 5000 rpm). Large variations in predicted pulsation amplitude can be

effected by varying the hose equivalent bulk modulus. Values of 1000, 10,000,

81,962, and 1,800,000 psi were used. Low values of bulk modulus reduce ampli-
tudes, but produce large errors in predicted resonant frequency by increasing
the number of resonant responses, i.e., lowering the natural frequency of the

. circuit.
The hose was modeled as lumped volumes of 12 in3 (actual) and 20 in3 at

its center, and 12 in3 at the downstream end of the hose. Large amplitude
{ error- at the higher speed resonances remained, however resonant frequency

i predictions were not altered significantly (300 rpm).
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The effect of pump pre-~compression was examined. Pre-compressed cylinder
pressure was varied by changing the estimated leakage during pre-compression

in the PUMP subroutine.

Pre-Compressed Resonunt Change in Predicted
___Pressure Speed Pulsation Amplitude
1000 to 2000 psi 1175 xpm + 10%
1600 to 2800 psi 2600 rpm + 5%
1900 to 3040 psi 3750 rpm + 10%
2100 to 3120 psi 4800 rpm + 107

Resonant frequency prediction was not effected by pre-compression pressure.
6. JET FUEL STARTER (JFS) ACCUMULATOR VERIFICATION

Figure 99 shows the test circuit schematic for each of the two accumula-
tor locations tested. The JFS accumulator was installed on a "T" branch off
the main supply line. Gas pre-charge was 1500 psig. Estimated accumulator
piston weight is 9.26 lbs (.024 lbs-sec2/in).

Figure 100 illustrates the input data used for modeling the test circuit
with the accumulator in the upstream position. Figure 101 shows a typical
fundamental frequency pressure response in this modeled test circuit as a
function of pump speed. Figure 102 plots the maximum peak pressure responses
measured in the circuit and compares them to the computed values. Resonant
frequency predictions are very good. However, amplitude predictions range
from very high (1900 rpm), to close (2700 rpm), to low (4150 rpm). Ampli-
tudes are somewhat lower than in the basic straight line circuit (Figure 94)
particularly at the lower resonant frequencies.

Amplitudes are approximately the same upstream and downstream cf the
accumulator "T". Resonant frequency location and separation are shifted from
uniform 1200 rpm separation of the straight line configuration.

Figure 103 shows a typical fundamental respons: meac.red in the circuit
with the accumulator located downstream. Amplitudes are about the same as with
the upstream position. However the wide separation in resonant frequencies
occurs between the lst and 2nd response rather than the 2nd and 3rd. Figure
104 plots the maximum peak pressure responses in the circuit (downstream loca-

tion) and compares them to the computed values. Resonant frequency predictions
are accurate as with the other circuvit. However, amplitudes predictions are in

error by about the same amount.
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HSFR - SUMMARY AND CONCLUSIONS

1) System resonant frequencies predicted by the HSFR program for a simple
short line system are accurate within about 2% - 4% (100 rpm from 2500 to
5000 rpm). Resonant frequency locations with the F-4 Helmholz resonator,
JFS accumulator, PULSCO attenuator, and F-15 utility filter manifold
circuit configurations were also predicted with 2 - 4% accuracy. Predic-
tions of resonant frequencies in the hose circuit were less accurate

(10 - 15%) and failed to show all of the resonances in the circuit,

2) Predicted amplitudes of peak pressure pulsations at syetem resonant
frequencies are 30 to 50% lower than values measured in the short straight
line system. The accuracy of amplitudes predicted in the filter circuit
are about + 302 at the lower resonant frequencies (2200 rpm). However,
predicted amplitudes in the filter circuit are 200 to 3002 high at the
higher resonant frequencies (3500, 4650 rpm).

Amplitude predictions are consistently high (0 to 400%) for the hose
circuit, with an apparent frequency dependent characteristic similar to
the filter circuit. Amplitude predictions were relatively good (+ 30%)
for the F-4 resonator circuit, and poor for the JFS accumulator circuit

with no apparent frequency dependence.
3) Predicted and measured amplitudes of resonant pressure level decreased

with increasing steady state flow from 0 to 20 gpm in the simple short
line test circuit. Reduced reflections at the terminating load valve as
flow increases results in a net reduction of the standing pressure wave
amplitude, even though predicted pump pre-compression characteristics

degrade slightly with increasing flow for a given shaft speed. An 96
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increase in pulsations with higher flow, i.e., the opposite effect, is
observed in a single long line test circuit and in full scale iron bird
systems comprised of multiple long-line branches. Pump pre-compression
may be more significant to pulsation levels than is the change in dynamic
load with increasing flow in a long-line multibranch system.

Resonant frequency locations are unaffected by varying pump steady

state flow level from O to 10 gpm in the short line test system.
4) The HSFR program and the model of the PULSCO acoustic filter provided

useful predictions of circuit frequency response when the PULSCO unit iz
installed in a simple short line system. Prediction of maximum pulsation
amplitudes is good for circuit resonant frequencies above about 607 of
the attenuator design cutoff frequency, but is several times measured
values for circuit resonances below 607 of cutoff levels.

5) The accuracy of predicted pressure amplitude at system resonant fre-
quencies decreases at harmonics of the pumping frequency.

6) An 80°F increase in oil temperature decreased the system resonant
frequency locations by about 400 rpm (pump shaft speed).

7) Internal outlet passages of the F-15 pump port cap and manifold should
be modeled as lengths of line (outlet size) rather than as a lumped
volume.

8) Table 2 compares the overall pressure pulsation characteristics
measured in the straight line test circuit wiich the various components

installed.

TABLE 2
COMPARISON OF MEASURED PRESSURE PULSATIONS WITH VARIOUS
TEST CIRCUIT CONFIGURATIONS

TEST CIRCUIT NUMBER OF MAX PULSATION 1IN

CONFIGURATION RESONANCES CIRCUIT g130°rg
(2000-5000 RPM) (2000-5000 RPM)

Short Straight Circuit 3 770 psip

(1 in OD x 9 ft)

PULSCO Filter (APT-1)

o Upstream Location {at pump 0 40 psip
o Downstream LocutlonmanifOId) 1 150 psip
Hose (1 in. OD x 20 in)

o Upstream Location 3 180 psip
o Downstream Location 4 160 psip
Filter (F-15 Manifold) 2 300 psip
F-4 Helmholz Resonator

o Upstream Location 3 300 psip
o Downstream Location k] 670 psip
JFS Accumulator (215 ind)

o Upstream Location 3 490 psip
o Downstream Location 2 700 psip
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The small (10 gpm) PULSCO acoustic filter was the most effective
device in reducing pressure pulsations over the full range of hydraulic
pump operating speeds. Pulsations were reduced by an order of magnitude
(770 psip to 40 psip). Similar performance was verified with the PULSCO
unit installed in the F-15 iron bird utility system. The 20 inch hose
produced a significant reduction in amplitudes (770 psip to 180 psip),

independent of its location in the circuit. The filter and F-4 resonator
were effective to lesser Jdegrees. The large accumulator (JFS) has rela-

tively littie effect on circuit pulsation level, particularly at the
downstream location. Significant changes in resonant frequencies occurred
with different accumulator locations in the circuit. The large piston
mass and/or non-flow through installation (tee) reduced its effectiveness.
9) PULSCO and F-4 Helmholz acoustic units are the most effective when
installed close to the pump. Locating the F-4 resonator or filter
several feet downstream of the pump retains high pulsations upstream of
the unit, although significant attenuation of pulsations downstream of
the unit are achieved.

10) The HSFR program/PUMP subroutine can be used effec.ively to study
pump hanger torque, port plate valve timing, and piston cylinder cavita-
tion characteristics. Model predictions indicate that the F-15 pump has
good overall pre-compression characteristics throughout the operating
range of shaft speed and flow delivery. Predicted decompression shows a
slight cavitation condition in the cylinder for all flow rates up to

40 gpm.

11) The HSFR program may be used to study resonance characteristics of a
hydraulic suction/return system. However, return system frequency
analysis was not part of the contract scope, and is not verified.
Resonant frequency predictions in the return system should be reasonably
good, owing to the use of the same computation method and models as are
used for pressure system analysis. The accuracy of predicted pressure
amplitude at return system resonances is unknown.

12) The importance of total circuit acoustic analysis cannot be under-
estimated. While an acoustic attenuator may be sized for a particular
frequency, its installation will alter the basic frequency response of
the circuit. The net effect of the attenuator or other system change

can only be evaluated in the circuit, whether by analysis or test. The
complex interrelationship between the pump and system dynamic load cannot

be ignored in the acoustic analysis of hydraulic systems.
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SECTION V
COMPUTER SIMULATION AND TRANSIENT TEST RESULTS

The transient data obtained in the Dynamics Laboratory from the test
bench shown in Figure 105 was used in coniunction with the HYTRAN computer
program to verify a mathematical element model. In general for any one
element a minimum of six variables were measured and recorded. These
variables aie the pressures and flows taken from the two instrumentation
stations in Figure 105. A portion of this recorded data was used in the
HYTRAN computer simulation of the test run to provide boundary conditions.
The output from the computer program was the flow and pressure plots at
the recorded data points. The plots were compared to the recorded data not
input with the simulation and the math model of the element being tested
was either corrected or verified from this correlation. To illustrate
the verification process the data taken in the laboratcry and the computer

sinulation of the test run is presented below for a line element.

Alteranate Position

Position for return Poeitioned foF 60 pst
Transducer eide testing pressure side Relief
teuting
“’ @ o © Q-
¥-15 ars
Accunulator i
fF-4 PC
Tlow Coatrol
Reservoir
Servovalve _ﬁ
\ Instrumention
) Alre-ometer
Nsrw-up valve Control Valve
Turbise | D | Pressure _!
Tlowestere Line Filter Load Valve
Bootst rap
Control
’Tluo Attenuator hecumulator Pusp
Cart
Care
Drata
Filcey
k.4 Pump Hose (Typ.)
Nrive 1_‘_—)1-46-; 4
| ey Y e
Negensing Hest Exchanger
Unit (Tvp.)

FIGURE 105 STEADY STATE AND TRANSIENT TEST BRANCH HYDRAULIC SCHEMATIC
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In the testing of the line element during a turn-off transient (Figure
106), the transient is supplied by a fast valve (1 msec typical closing time)
downstream of the line specimen. Steady state values of pressure and flow
are being recorded when the valve is closed at time t;. The response to
the valve closure is recorded on magnetic tape for P;, Py, P3, P4, Q1, Q4
and valve position. To analyze the data it is transferred to a computer
data file by the methods described in Section III, Paragraph 2. Before
data can be processed with the HYTRAN program, the physical description of
the test system to be simulated is input. For the line model the two
instrumentation sections and the line test specimer is all that is required.
The pressure histories at the upstream (Py) and downstream (P,) end of the
line test setup are used as boundary conditions for the computer simulaticn
of the test run. The HYTRAN computer program calculates the flows and pres-
sures for each time step in the transient analysis using the measured data as

the line end boundary conditions as shown in Figure 107.

P1 P4 lJ'UU\P_
PRESSURE | | PRESSURE

| > TIME » TIME
ty+t) R
RECORDED DATA
USED FOR COMPUTER INPUT FAST
CONTROL
VALVE
o o2 TEST SPECIMEN o3 o
FLOW
FROM __ ﬂf 0 ﬂn -l LCE)TURN
PRESSURE “‘Gm U Y ad¥ SYSTEM

SYSTEM
! .= LENGTH ]

CONDITIONS: STEADY STATE FLOW, QAT t=0,

FAST VALVE CLOSED AT t = ty

PRESSURE WAVE REACHES P1 TRANSDUCER
AT t1 + 1} TIME WHERE:

tV=r/c
C = VELOCITY OF SOUND IN THE FLUID
a1, Q4, P1, P2, P3, P4 AND VALVE POSITION ARE RECORDED

FIGURE 106 KECORDING A TURN-OFF TRANSIENT
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HYTRAN
COMPUTER PROGRAM
P1 DATA P4 DATA (Samc 28 DATA

irsut Aata)  OUTPUT
PROGRAMMER SELECTED PLOTS

OF PRESSURES AND FLOWS ALONG

THE LINE

FIGURE 107 INPUT AND OUTPUT OF COMPUTER LINE SIMULATION

The computer simulation which uses a combination of math models aud

measured data gives plots of flows and pressures in the system. The plotted

computer outputs were compared to the recorded data which is not input
with the simulation, For the turn off run in Figure 106 this would be Q1»
Q4> P2 and F3. Good computer output/test data correlation verifies the
model. Accurate dynamic flow data is necessary to intelligently alter
the models, if that is necessary to achieve correlation.

A different boundary condition can be added to the computer simula-
tion ot the simple line system by inserting a fast closing valve in the
model downstream of the line and using the recorded valve position instead
of the line downstream pressure for input data. This technique allows the
variables measured in the laboratory to completely defire the component of
interest.

The majority of the testing was done at 125 and 210°F with flows
ranging from 11.35 to 38.5 CIS. The percent of dissolved air in the
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hydraulic fluid was less than 1% by volume. Two [luids were used in the
transient testing - MIL-H-5606B and MIL-~H-83282. Any test conditions that
deviated from the above are noted where applicable.

1. LINE MODEL VERLFICATION

An analysis of the test results obtained in the laboratory compared
to the HYTRAN computer program line model is presented in this section.
The testing for the HYTRAN line model verification was performed on a 1/2"
diameter x 30 ft long tube with MIL-H-5606R hydraulic fluid.

The line subroutine uses the classical distributed parameter wave
equations to model the lines. The equations are solved using the method
of characteristics and finite difference technigues. The steady state
and dynamic friction subroutines are called to obtain the friction informa-
tion for the line. The dynamic friction subroutine uses a decaying func-
tion of dQ/dt to calculate the frequency dependent friction.

a. HYTRAN Computer Simulation with Line Test Data - The most accurate

test of a computer simulation comes from inputting only the steady-
state boundary conditions to the program and letting it predict the
resultant trensients in the system from a valve opening or closure.
To obtain steady state boundary conditions, one has to start at

places where flows and pressures are known and easily measured, such

3 as accumulators and reservoirs, to run the simulation. In verifying

the line model it would be unwise to include other components into

F thhe computer run of the system, since the effects of these other
components may not be completely urnderstood, and their math models

3 have not yet becen adequately verified. Thus in the line model

verification programs only lines and ccmponents that have minor

effects on the line slmulation were used in the computer program.

Both turn-off and turn-on transients were compared to the actual

computer outputs by over-plotting the measured data on the computed

resultant graphs.

3 For the turn-off transient simulation, a fast closing valve

- and a line bounded by a constant pressure reservoir was used. The

system schematic is shown in Figure 108. This configuration was

used for vurn-off transient analysis, because the boundary conditions

were easily defined after the valve closure. For a turn-on transient,

102

B i Mt e




A A A A AR I I Ml S A A A B A e A S

o el

because of the short return line system (17"), there was very little
noticeable effect on the upstream baseline tube; and the steady

state boundary conditions were simple to obtain.

Component 1 Component 2 Component 3

30' test line with
2-18" instrumenia-

TEST91 | tion sections VALV21 17" RSVR61
Line 1 Line 2

Fast Closing Valve

FIGURE 108 COMPUTER PROGRAM SCHEMATIC OF TEST SYSTEM USING P1 DATA INPUT

Three components were used in the program schematic of Figure
108 in the computer simulation. They were, TEST91, VALV21l, and
RSVR61. TEST91 was a subroutine that used recorded verification
test data. For each time step of the transient analysis, a test
data value was inserted as the line end point boundary condition.
Included in Line 1, were the 30 ft baseline tube, the two 18" instru-
mentation stations and a 15" line segment, which was immediately
upstream of the fast valve. Figure 109 shows the basic test stand
arrangement in the laboratory with the appropriate dimensions.
VALV21l was a control valve element for which the valve opening ot
closing characteristics versus time were input. The valve subroutine
used tabulated valve strokes to calculate total valve area versus
time. Using the data from adjacent lines, it calculated the pressures
at its upstrean and downetream connections, along with the flow, and
returned the data to the lines. Line 2 was a 17" segment of 1/2"
diameter tubing going into the reservoir, which was modeled by
RSVR61l., The 61 reservoir was a constant pressure type used in simula-
tions to provide a steady state boundary condition. Typically the

reservoir pressure was set to 50 PSI,
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FROM PUMP

FIGURE 109 TRANSTIENT LINE TEST CONFIGURAT ION

P; pressure data was input through TEST91. The walve closing

or opening time was manually computed from the test data and then

input into the program. The computer program then predicted the flows

and pressures at given distances down the lines. For the TEST91 sub-
routine the data was the actual interior line boundary points. The
valve and reservoir subroutines form the boundary conditions of the
lines and were solved simultaneously with the associated line charac-
teristic equations.

The HYTRAN program gave plots of pressures at Py, Py, P53 and Py
and flows at Q; and Q4. The plots of P,, P3, P4, Q1 and Q, were then
overplotted with the actual test data for comparison.

The Q1 and Q4 data plots were obtained by applying a linearizing
equation to the recorded anemometer voltages. The equation was generated
by fitting a second degree curve through the calibration plot anemometer

voltage vs turbine meter flow. The pressure data was linear, meaning
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that transducer voltage is directly proportional to pressure, and no
other relationships was developad for plotting the pressure data.

Another set of boundary conditions used in the line model verifica-
tion involved only the 30 ft tube and the instrumentation sections.

The HYTRAN program computer schematic is shown in Figure 110.

Component 1 Component 2

30' test line

vith 2-18" inetrumentation
tions TEST91

TESTI1

Line 2

FIGURE 110 HYTRAN SCHEMATIC OF TEST SYSTEM USING P1 AND P4 DATA INPUT

P} and P, test data was input through the two TEST91 subroutines to
provide boundary conditions for the line siisulation. Line 1 contained
the two 18" instrumentation sections and the 1/2" dia x 30 ft long tube.
The HYTRAN program printed plots of Pz, Py, Q4 and Q, for comparison
to the test data.

A HYTRAN computer program output plot of Py data that was input
with a simulaticn is shown in Figure 111. Tne actual P; test data
(continuous black line) is plctted over the graph of printed P's to
demonstrate thut comparing computer plotted outputs to test data is
entirely acceptable.

The ficst sat of data to be compared to a computer run was for a
turn-off transient at 125°F.

With Figure 112 input data and Figure 111 P; data, the HYTRAN
simulation of the line model was run. Figures 113, 114, and 115 show
the computer printed outputs overplotted with laboratory test data.
Figure 113 is a plot of the P, data over the computer predicted pres-
sure data for the P, position. The computer output of P, position is

not exactly in the same location as the test data. From the test

configuration that was simulated, the P4 transducer is located 396 inches
from the Py transducer (360 inches for the haseline tube plus 36 inches

for the instrumentation sections). The comrputer printed out the pressure
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at 400.98 iuches along the line. The reason for this discrepancy is due

to the AX interval chosen by the program for computation using the method
of characteristics. For the 411 inch line in Figure 112 the 2X wes 10,0244
inches. Since pressures and flows are calculated only at each AX in the
program, the computed values closest to the distances specitied by the pro~
gramner are output.

The computer output of P4 agrees favorably with the test data. The
asterisks by the P's in Figure 113 indicate pressure values that deviate
from the pressure trace. This could be due in part to mechanical vibra-
tions of the tube shown in the Py input data (Figure 111) that propagate
through the transient calculations ian the progran.

The data taken in the lab is sampled at a .0002 second interval. This
data is not reprocessed in any way for noise content. Consequently all

mechanical and noise disturbances do appear in the P; data. The method

of characteristics used in the computer program for the line model uses
every data point as a line end condition. Any small perturbation will be
reflected throughout the entire calculation. These changes may be rein-
forced or subdued depending on flow and pressure conditions existing in

the line.

The Q1 and Q flow plots are shown in Figures 114 and 115.

The hot film anemometers positioned in the flow stream can only
measure flow magnitude and not direction. The computer output plots
of flow have the actual flow calculated printed out with the letter Q.

For flow reversals the magnitude of the flow is printed as an asterisk

character. The anemometer data was then directly plotted over the com-~
puter plots for comparison.

In Figure 114 the flow reversals of the recorded test data shown by

T T R B TR T T T TR

the first, third, fifth, etc. peaks have a definite flow decay, while
the even numbered peaks indicate a flatter response. The computer
printout does not shcw this eifect.
A possible explanation for the decaying flow reversals in the Q) test
P data comes from the shape of the velocity profile under transient condi-
tions. When a steady state flow in a line is subiected to an abrupt valve
? closure, the flow first reverses itself along the tube walls. As the reverse
flow becomes established the maximum velocity profile drops closer to the
E tube centerline. Since the hot film probe is in a fixed pcsition close

to the tube wall, it can sense this apparent flow decay. The reason this
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does not occur for forward flows is because the maximum velocity profile
is closer to the centerlire of the tube. The line subroutine in HYTRAN
does not currrently model this type of behavior. The computer output in
Figure 114 indicates this.

The computer plots do not agree in magnitude with the test Jata except
nﬁjf for the initial steady state flows. The actual test data indicates a slower

decay rate to the zero flow condition. The computed flows appears .o be

slightly overdamped.

Figure 115 is the Q4 computed output data. On the tura-off transient
: it fails to show the first peak flow near the valve. This is due to the
rﬂ‘ plotting interval chosen for the output plots. Pressure and flow calcula-
tions are made in the line simulation of the system transient for every
3 point of the Pl input data, which contains 1000 sampled points. The
i computer can only plot 101 data peints for each graph, thus for 1000

data values every fourth point calculated is plotted.
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A turn-on transient at 125°F was simulated with the computer program.
The data input for the computer run is in Figure 116 with the computer
input information given in Figure 117. The output pressures and flows
are shown in Figures 118, 119 and 120. The P, pressure data trace in
Figure 118 indicates good correlation with the cumputer output plots,
although the first peak pressure points for the P, test data are higher
by about 150 PSI for the maximum value. The flow test data in Figures
119 and 120 show a gradual increase to the first maximum value from the
zero flow condition. The computer predictionu in both Figures 119 and 120
jump to a flow level immediately on opening the valve. The gradual in-
crease in the test data could be attributed to the time it takes the
fluid to develop a good velocity profile.
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The steady state flow at the end of the data run rises to about 45 CIS.
This is more exaggerated in Figure 119 than 120 because of the plotting
scales. The incresse did not show up in the computer plots becguse the Pj
input data did not contain erough pressure information to account for the
increased flow in the system. These results bring out some of the problems
with the hot film anemometers in the laboratory. Because of their posi-
tioning in the system they are not capable of measuring a mean flow, only
a local velocity limited to a specific region close to the tube wall. The
rise in steady state flow after .16 seconds in Figure 120 indicates an area
of turbulence around the probe tip. This eventually settles to 38.5 CIS
steady state flow after the flow profile has been allowed to develop.
The HYTRAN line model does not acccunt for any delay that canm occur in

the establishment of turbulent flow.

b. Effect on Dynamic Friction on Transients - Using the P; data in Figure

111 the system in Figure 109 was simulated by the HYTRAN computer program.
The important difference in this simulation was that the effect of dynamic
friction was omitted from the simulation., The DFRICD subroutine is used
by the line model to calculate pressure loss due to dynamic friction
caused by fluid acceleration. The computer results of the simulation

are shown in Figures 121 and 122. Figure 121 is an overplot of P4 data
on the computer predicted results. This plot chows the importance of
modeling frequency dependent or dynamic friction effects in the computer
program. The predicted pressure peaks are less attenuated than the data
resulting in a much squarer waveform. Also the pressure amplitudes take
longer to dissipate with only the static line frictiorn in the model. The
frequency dependent efrects are clearly indicated by this plot. Figure
122 18 the flow plot for this simulation.

c. High Temperature Line Model Verification - The HYTRAN computer simu-

lation of a turn-off transient at 210°F used Figure 123 test data and
Figure 124 input dara. Figures 125, 126 and 127 show the computer printed
outputs overplotted with laboratory test data. Figure 125 is a plot of the
P, data over the computer predicted pressure data for the P, position.

The computer output of P4 agrees favorably with the rest data. On
the data curve, the initial pressure peaks contain mechanical vibrations
which damp out as the run progresses in time.

The Q; and Q4 flow plois are shown in Figures 126 and 127.
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A turn-on transient at 210°F was simulated with the computer pro-
gram. The data input for the computer run'is shown in Figure 128. The
output pressures and flows are shown in Figures 129 and 130. The P4, pres-
sure data trace indicates good correlation with the computer output plots,
although the initial pressure dip for the P, test data is not present
in the computed plot. The flow test data for Figure 130 shows a gr .- il
increase to the first maximum value from the zero flow condition. The
computer prediction in both figures jump to a flow level immediately on
opening the valve. The gradual increase in the test data could be attrib-
uted to the time 1t takes the fluid to develop a good velocity profile.

c. Conclusions - The HYTRAN line model calculations of flows and pressure
compare well with the test data measured in the lab. Some discrepancies
exist between the data and the mathematically predicted results as already

noted. The resulrs indicate that the line model is reasonably good.
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2 HYTRAN CAVITATION MODEL VERIFICATION

In this section the test results obtained for cavitation effects in
a system return long line are compared to the HYTRAN computer program line
model. The testing on the line was performed on a 1/2 inch tube with MIL-H-
5606B. In the HYTRAN program the pressures at the component ports are calcu-

lated. If this pressure is less than the oil vapor pressure, cavitation condi-

tions exist at the line end points.
E§ The return line test series was run on the system configuration shown
: in Figure 131.

The following parameters were recorded in the latoratory for the test

runs: Pl, P2, Q2, P3, Q3, P4 and valve position. Fj, Py, Pg and Q3 were

recorded directly onto cassette tape.

The test runs are listed in Table 3.

e

LA
e
o
B

AQ. transient at 125°F and 38.5 CIS was simulated with the HYTRAN computer

a. Computer Simulation with Return Line Test Data - A return line turn-off

program. The input boundary conditions were the 10-07-P5 pressure taken
immediately downstream of the JFS accumulator in Figure 132 and the 10-07-

P4 pressure next to the F-4 reservoir in Figure 133. The system input data
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is shown in Figure 134. The dynamic friction at the line end points were
set to zero whenaver the pressure fell to the fluid vapor pressure in the
DFRICD subroutine. The computed results in Figures 135, 136, 137, 133 and
139 show good correlation to the data. The predicted pressures are slightly
higher than the data and the phasing between the measured data and ccinputed
regsults is better but after the third pressure peak they drift apart as
shown in Figures 135 and 136. All pressures and flows do settle to the
rroper steady state values.

The flow plots ia Figures 138 and 139 shown the deceleration of the
fl:1d after the turn-off command at 890 milliseconds. The flow is thern

reflected and gradually dampens out.
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TABLE 3
TEST CONDITIONS FOR i/2" DIA X 30 FT LINR

_ 1 Test Run # Flow Condition Flow Rate Temp
, Specimen . _(cis) &)
_f 1/2" dia x 30 ft line 10-07-XX* Turn-0f£ 38.5 125
3 n 10-07+¥X Turn-On 38.5 125
" 10-08~XX Turn-0f £ 11.55 125
o " 10-08+XX Turn-On 11.55 125
3 " 10-09-XX Turn-Off 38.5 210
i " 10-09+XX Turn-On 38.5 210

'3 " 10-10-XX Turn-Off 11.55 210
9 ' " 10-10+XX Turn-On 11.55 210
. . *XX ~ Denotes measured data paramcter
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A turn-on transient at 125°F was simulated with the computer program
at 38.5 CIS flow, The data input for the computer run is shown in Figures
140 and 141 with the computer input information given in Figure 142. One
output pressure is shown in Figure 143.

The first pressure peak in Figure 143 correlates with the computed
output pressure. Subsequent computed pressures do not match the data.
However, the calculated data does settle down to the proper steady state
value. This run was made with the fluid vapor pressure at 2.C psi and the
dynamic friction term set to zero whenever the line end points were equal
to or less than the fluid vapor pressure. The computer predicted results
show a much shorter reflection time for the second pressure peak. The
actual pressure data cavitates more in the 100 to 250 millisecond period.

The flow plot in 144 indicates why the computed results do not corre-
late. After the initial turn-on at 80 millisecond the flow in the line
makes a sharp dip. This physically is due to the filling of the return
line from the high pressure. The computed data shows a small dip at 110
milliseconds which is enough to completely £fill the dowstream line in

the simulation but not in the actual data run.




F .- R L ——
»
E
3
£” N
2 )
3 TG
3 L Q
3 T
T
P p Ll | 1]
Hittttn
m‘mﬁ :
4 Mff
3 PP HEH
gl TJH
tH AL E i W :
ARE | 0 =2 aE
; ~ v e 2 2 &
E ! ' e S
1 Z ) 0 S
M . o
 : S EZ 9  £3.
i o o B § o .
H U Az Nz
r o m
: N o/ O =R °
. XA 1wl M €3
§ . 7 —t
E | zN ..WS 0n < DO~
1 <D~ <S5«
b — MTl a
59 z  Cgn
: 4 mmc — Z¥0
; > T own 545
- L g Ll L
. - S ™M M S —H™
—
d o —~ :
- 3 k- 2 1
: i
: g &
; & z
= 9
[ (™

” LEUNNIXW ~2Z2 LE—O

: o




CLer WUN MO 10-074%3 RETURN LINE TURK-ON YRARKIENT seee (afL i)

WL TRLACIENT ALGOONSE TS ¥RON ¥s9,0 T4 Yo ° ,8853 SECONDS AT TINE IWPTRVALS OF BELTe 00088
NITH CUTPUT POINYS M OTTZO AT INFEAVALS OF . «80500  RCLOHOY

FLUIO NATA ¥OR  nELene4%6 AT  3038,0 #S1C, - S0.0 PSIC LND 125.0 DJC F N

e W .. vISChSITY e Li7f 0% CLSBECCIINSSR/SEC . . o LUl
' DENSITY Y Y1 21 18 SOCSE=DNILB-SECO* RN 7 TLi00y
= BULY MOCWLUS = L 226L¢0h T e 19180 36PST LTSS T e M
VAPOUT PRESS,= ,296£°01 AT 125.0 OCC F -
PIISU® TACEW AT LINE 18,VEL OF SOUNY IN WINT 1 I8 ' 3.$PER CENT TN CRROY . " .7700 et -
LN aem COLENGTH LOIMTERWAL T WA . wed F . 0ELY .. . CHARACTERTSTIC YELOCITY OF
S R 3 Tatbuness SR weeeingl 1144
1 . Te.0000 B YY) Lo eBZRY L L302Ee00 .. 26.000A | . 261453 . 48033.9988
? 9e.5000 hesd T «8290 TSBINESGE T 26443337 T 2641883 T aeTet. 3504
gy, t INTEGER OATE | 1 9§ B =1 . 1 =0 =) =0 =8 0. =0 =0. -8 -0 =0 <=
£CuPe, T OINTEGE® DAYA r 3 1“2 <0 =0 <8 ~0 <= =0 b R
_REBL NATA FARA o 3 JE200E-01  J6500€e30 -0, -, ET POV ¥ PO
AL ABTA CAR ] Co 1 T JAN0OE-01L T L0600E~08  JSQUCEe00 =8, T T mg, T
WPAL 0ATA CARR o 3 [ T Qe .. ... eJITOESN0 . J3ITOECND <3a ... . -

Cewse, 3 INTEGEM MATY T T3 Tt Tg T2 1 T e g -g T epT mg THpT Teg”

FIGURE 142 10-07 TURN-ON TRANSIENT COMPUTER INPUT DATA

=
v
20TS

i
12300220 Svemvescanpoco-mny evveremmctoccrannsctossanenavbnaananas etecemcsamntornrornonpmancnwrrabe nacancen
’ |
H
. ! PPP COMPUTED PRECIURE
b A ~=w=  DATARUNNO. 10-07+P1
; l
{
thieteil ¥ ¢
p o ! - 3
> H :
B ; -
1 : !
3 i Pl
; [ - . )
0ieaCi20 ¢ ! )’\

PRPT RN

R L UL oL b LR R AR U P R P

™

FARNUS A AR

........ cprocavonmat

: HE
L5 LIND NUM2ER ik

-
. .

LoaTsTanss
reriedtiar

I3

FIGURE 143 10-07+P1 TURN-ON TRANSIENT ;

- _ BEST AVAILABLE COPY

}
)
i




Q0Q  COMPUTED FLOW
. "% ABSOLUTE VALUEOFQ
= DATA RUN KO. 10=-07+02

| BERAP

%p |

$3.0232 .Fﬂh o .. .

oﬁMii N |' T j |

R O | S

ol ‘T".';; o ’"0"""6 "5"<?‘ji’§:°"ln?.’,t.fﬁ\” WA "l’.‘,}l;‘x'{:pj’,’ -“',‘.,715.‘;?“1{;?:’3-?@&;-::’5,
" R T S T TSP TR T P Wy i

":{ _':.i % o UL | W|'f'h\ 7‘““ 1 r fi e

!
b
|

o i
! mﬂm@m-'—-.. --------- same .
-1 138
,
i
e3L,0030 Secamamans boiieme e sroeseoee trrscmcnna teccomanm bemren-ase bescacanaa temcnsanaa tmacesvonan T .
: = .
ferisy oy epee enitiiaee g v £33 3 2:3TaNiz 8377 26,43 Incues aL3NE LIng nuvase (30
Sereauyan 1legrene 30N UING TORN-CATFEINGIENT Tee s {525 :

FIGURE 144 10-07402 TURN-ON TRANSIENT

While the flow is increasing in the turn-on transient it remains laminar
well past the normal transition Reynolds uumber. Similarly for turn-off
transients the flow remains turbulent for a longer time period. The FRIC
subroutine in HYTRAN does not account for this phenomena. Once the tran-
sition flow is reached the appropriate turbulent or laminar factor is in-
cluded in the computation. Thus the computer program is predicting higher
losses than actually existed in the line. Figures 145, 146 and 147 show
data from a run made with the turbulent friction factor set to zero. They
show much better correlation to the actual data. Since the friction
term was incorrect, the pressure does not settle to the proper steady

state value.
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b. Conclusions - The HYTRAN line model calculations of flows and pressures
under cavitvation conditions did not compare well with the test data measured
in the lab. For turn-off transients reasonable correlation was obtained
when the line dynamic friction was set to zero. DFRICD was zeroed when-
ever the pressure at either end point was equal to or less than the fluid
vapor pressure.

The computer output results for the turn-on transients also did not
compare well with the data. The majority of the error may be attributed
to the use of the turbulent friction term when the Reynolds number reaches

the transition number, while in reality the line flow is still laminar.
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3. PUMP MODEL VERIFICATION

The transient test results are compared to the HYTKAN computer pump
subroutine - PUMP51.

The transient test series were run on the system configuration shown
in Figure 148.

A brief summary of the test conditicns for the ¥-15 instrumented pump

is shown in Table 4.

TABLE 4

TRANSIENT PUMP TESTING

Test Series No. Fluid Type Special Conditions
63 MIL-H-5606B Check Valves in Pump
Manifold

MIL-H-5606B 0il

64 MIL-H-5606B No check valves in
Pump Manifold
MIL-H-5606B 0il

65 MIL-H-83282 No check valves in Pump

Manifold
MIL-H-83282 0il
Corrected Hanger Posicion

Data recorded for each test condition were:

o System supply line pressure (Pl)

o Suction pressure (P£)

o Case drain pressure (PCD or P2)

o Line pressure near control valve (P5)

o Transient control valve position (XCV)

o Pump control (actuatcr) pressure (PC)

o Pump Outlet Pressure (PP)

o Hanger Position (XH)

o Compensator Spool position (XC)

o Drive torque {DT)

o Orive speed (DS)

The system reservoir pressure was kept at 50 psig by arn independent

bootstrap accumulator source as shown in Figure 148.
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a. Test Series €3 - Transient Tests with Check Valves in Pump Manifold -

The first transient test series with the F-15 instrumented pump was
performed with check valves in the pump manifold at the pump outlet
ard case drain lines. These check valves were designed to keep the
lines to the pump from draining when the pump is removed from the
menifold. Their presence also affects the pump internal dynamic
operating characteristics. MIL-H~5606B hydraulic oil was used in the
test fixture.

All the 63 series tests are shown in Table 5 which contains the

run numbers for each test.
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TABLE 5

Hytran Pump Model Verification Test -63 Saries

Steady State Control Valve Case Pressure Punp Temparature Run Number
Plow Levels (CI8) Operating Time (SEC) At S5 Leakage Speed Pump Inlet Turn On (63-XX+XX)
Lo Hi On off Condition (1.5-3.8 CIS) {RPH) (Dsg V) Turn Of £ (63-XX-XX)
1. load Level Effects
2.0 - 19.25 .002 ,002 100 PSIG 4000 130 63-01
2.0 - 385 .002 .002 100 PSIG 4000 130 63AC2
2.0 - 17,0 .002 .002 100 PSIG 4000 130 63-03
11. Loading Rate Effects
2.0 - 77.0 .010 .010 100 PSIG 4000 130 63-11
2,0 - 77.0 .020 .020 100 PSIG 4000 130 63-12
111, Speed Bffects
2,0 - 57.75 .002 .002 100 PSIC 1600 130 63-20
2.0 - 57.718 .002 .002 100 PSIG 2500 130 63-21
2.0 - 5S87.75 .002 .002 100 PSIG 3000 130 6322
2.0 - 57.75 .002 .002 100 PSIC 3700 130 63-23
2.0 - 57.75 .002 .002 100 PSIG 5000 130 63-24
IV. Case Pressurs Level Effects
2.0 ~ 77.0 002 .002 220 PSIG 4000 130 63-40
V. High Flow - Smell Load Changes
77.0 - 115.5 .002 .002 100 PSIG 4000 130 63-50
115.5 - 154 .002 . 002 100 PSIG 4000 130 63-5L

In run number 63-03-P1 Figure 149 the pressure transducer is located
approximately 18" from the pump manifold outlet pressure port, The initial
pressure splke at about .028 seconds shows the arrival of the transient
pressure wave caused by the control valve closure and the subsequent
pump response. Run number 63-03-P5 in Figure 150 which is the pressure
trace close to the control valve shows the initial waterhammer wave cccurring
at .018 sec and the subsequent pump response superimposed on this wave
at .037 sec, It should be noted that this spike is not related to the
waterhammer phenomena but is simply the pressure response characteristic
of the pump being hit by the original waterhammer wave.

The high frequency content of the pressure traces results from the
punp rpm. The typical operating speed was 4000 rpm or a frequency of 600

hz for a nine piston pump.
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b. Test Series 64 - Transient Tests without Check Valves in Pump Manifold -

To observe the dynamic pump characteristics it was necessary to remove
the check valves in the pump outlet and case drain lines. Many of the :ests
made in the 63 seriles were run again. Table 6 is a listing of the HYTRAN
pump model verification tests on the F-15 instrumented pump. MIL-H-560A8B
hydraulic fluid was used in the test system.

A comparison of runs with and without the check valves in the manifold
show the effects that the valves have on the pump dynamics. 1In Figure 149
the check valve in the output pressure line keeps the pressurce frem falling
below 3000 psi. The internal pump pressure in Figure 151 drops below 2000
psi and follows the actuator control pressure (63-03-PC Figure 52) response.
Both inlet and case pressures in Figures 153 and 154 exhibit large peak to
peak pressure values, the 63-03-PCD run appears to show a transducer resonance

problem around 40 milliseconds.

TABLE 6

Hytran Pump Mcdel Verification Test -64 Series

Steady State Control Valve Case Preasure Pump Temperature Run Number
Fiow Levels (CIS) Operating Time (SEC) At SS Leakage Speed Pump Inlet Turn On (64-XX+XX)
Lo Hi On off Condition (1.5-3.8 CIS) (RPM) (Deg F) Turn Of £ (64~ XX+XX)

I.

11.

2

111,

1v.

2

Load Level Effects

- 19.25 . 002 .002 100 PSIG 4000 130 64-01
- 385 .002 .002 100 PSIG 4000 130 64-02
77.0 . 002 .002 100 PSIG 4000 130 64--03

Temperature Effects
- 77.0 .002 .002 100 PSIG 4000 210 64-30

Case Pressure Level Effects

- 717.0 .002 .002 120 PSIG 4000 130 64-40

Suction Transient Cavitation

- 154 .00? .002 100 PSIG 4000 130 64~€0
(Ppecy™50 PSIC)
- 15 .002 .002 100 PSIG 4000 130 §f;6,
(PRESV-ZS PSIG)
- 154 .002 . 002 100 PSIG 4000 130 64-52
‘Pnasv"o PSIG)
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With the check valves removed in Figures 155 and 156 64~03-P1 and -FP

fall beluow the steady state pressure of 3000 psi during the transient,

PP 1s the internal pump pressure used to Countrol the actuatoer position,
and P1 is the pump outlet pressure about 18" from the pump manifold.

In 64-03-~PP the initial waterhammer wave hits the inlet of the pump
temporarily stopping the outlet flow. The pump responds to this condition
by increasing the outlet pressure to about 3500 psi at 32 milliseconds
into the run. Much of the energy of this pressure wave is absorbed by

the pump and converted to actuator and subsequent hanger motion. JTc¢ is
interesting to note that the pump outlet pressure wave does follow the
compensator spool position as shown in Figure 157. The measured spoot
position closely tracks the pressure for all the test runs that were made.
This fact was used in the model to compute the pump outlet pressure knowing

a valve position,
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< One notes the same type of phase similarity between the pump input

- pressure 64-03-PS, Figure 158, and the actuator control pressure 64-03-PC,

i Figure 159. The inlet pressure transducer trace (Figure 158) does show a

3 100 psi peak-to-peak pressure like 63-03-PC in Figure 159. The case pressure
;f 64-~03-PCD, in Figure 160, has only about a 20 psi peak to peak pressure.

' At 50 milliseconds in 64-03-PCD there is a pump response that may be

related to some pressure inbalance inside the pump  This spike is not

due to transducer resonance mainly because of 1its low frequency content.

c. Test Serles 65 - Pump Transient Tests without Checr. Valves in the Manifold -

: The development fixture oil was replaced with MIL-H-83282, and the pump
X steady state and transient tests were rerun to determine the effect, if
b any, on pump performance. A list of the transient tests are shown in

Table 7.
The other results of the transient tests with MIL-H-83282 appear to be

identical to those obtained with MIL-H-5606B in the 64 series,
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TABLE 7

Hytran Pump Model Verification Test — 65 Series

Steady State Control Valve Case Pressure Pump Tauperature Run Number
Flow Levels (CIS) Operating Time (SEC) At SS Leakage Speed Pump Inlet Turn-On (65-XX+XX)
Lo Hi On off Condition (1.5-3.8 CIS) (R®PM) (bxc ) Turn-0f £ (65-XX+XX)

1.

11,

111.

1v.

Load Level Effects

2 - 19.25 .002 . 002 57 PSIG 4000 130 65-01
2 - 38.5 .002 . 002 58 PSIG 4000 130 65-02
2 - 77.0 .002 .002 90 PSIC 4000 130 65-03
2 - 710 .002 . 002 58 PSIG 4000 130 65A03
2 - 154.0 .002 .002 49 PSIG 4000 130 65-04

Speed Effects

2 - 57.75 .002 .002 49 PSIC 3000 130 65-22
2 - 57,715 .002 .002 43 PSIG 5000 130 65-24

Temperature Effects
2 - 717.0 .002 .002 53 PSIG 4000 210 65-30

Suction Transient Cavitation

2 - 154.0 . 002 .002 29 PSIG 4000 130 65-61
(Pusv-ZS PSIG)

d. Verification of the HYTRAN Pump Model ~ For pump verification it was

necessary to establish adequate boundary conditions. The inlet pressure,
and case drain pressure were chosen. The suction pressure transducer
was located about 24 inches from the pump inlet, and the case transducer
was 13 inches from the pump case drain port. Figure 161 shows the HYTRAN
program schematic used in the pump verification rums.

Looking at the PS and PCD traces for any of the 63, 64 or 65 series
runs, one notes the superposition of the pumps ripple frequency on the

pressure wave. At 4000 rpm the frequency of the nine piston pump is

4000 REV % 9 CYCLES * 1 MIN _ 600 CYCLES
MIN REV 60 SEC SEC

This ripple freaquency superimposed on the pressure trace made the
boundary conditions very noisy. The noise manifested itself in the
pump math model and produced erroneous results, Typically at 4000 rpm
the pump input pressure would vary over a one hundred psi range in 1.6
milliseconds. The data was sampled at a .2 millisecund time step, thus
the calculation internal was .2 milliseconds. So in 8 Ats the input

pressure could vary by as much as 100 psi. In a complicated model where

many factors are interdependent this rapid change produced bad correlation.

It became necessary to modify the data to remove the pump noise., This was
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accomplished by using a 100 Hz filter on the pressure signals when thev
were played back from the analog tape into the waveform analyzer. F65-03-PS
in Figure 162 is a filtered suction pressure trace for a turn-off transient
av 77 CIS and 130°F. The unfiltered pressure trace is shown in Figure 163.

Tte unfiltered run had 100 psi peak to peak pulsations. After filtering

d they were reduced to 5 psi peak to peak. The basic pump pulsation

frequency still remains, but a 5 psi change over 1.6 milliseconds provides

a better boundary condition than a 100 psi change.
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The main reason for filtering the data is because the internal pump

flow and leakages are treated as though the pump has a continuous

output rather than a summation of nine individual pumping pistons

thus

requiring a reasonably continuous input. A model which includes the

dynamics of each piston would by necessity, be considerably more complex

and consume much more computer time than the current pump model.

Another analytical consideration was linearizing any leakage

paths

and assuming them constant for a constant output pressure. The alternative

would be to go into very detailed calculations with the leakage

dependent on piston load, hanger angle, rpm and almost anything else

one cares to add. Unfortunately, this too would probably be inaccurate

so instead a simple leakage model was chosen. A steady state verification

test with MIL-H-83282 showed that the case drain pressure versus c

drain flow was linear from maximum to zero case flow. This transl

ase

ates

to a linear leakage path from case to inlet at any flow or pressure

conditions. These results help to verify the simple leakage model
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In developing the model significant attention has been paid (o the
compensator valve dynamics. The forces on the valve are a combination of
the outlet pressure force pushing against the case pressure ana spring
forces, with damping and flow forces acting in either directicn.

The compensator valve position is assumed to be directly proportional
to the differential pressure between outlet and case. Tne compensator
position is used to determine the pressures and flows conrected with
the valve.

During the initial verification 2ffort the computer results indicated
that the actuator pressures were out of phase with the measured data. To
correct the phasing ithe effects of valve damping and hanger inertia were
included in the computation. This provided enough lag to obtain the proper
alignment,

The internal case pressure was found to be about 50 to 100 psi higher
than the measured case pressure 13 inches downstream of the pump manifold
case outlet. This discrepancy was significant at the lower case drain
flow rates. The measured case pressure (Figure 164) showed a rise, a
small dip then another rise to the maximum pressure. The hanger position
65-03-XH in Fipure 10 also exhibited this same characteristic. The computed
results for internal case pressure missed the first dip altogether and

overshot the second one.
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Not having an internal case drain pressure trsnsducer hampered the
investigation on whether this was an accurate resuit. This hanger
position is affected hy case pressure but cther factors as piston and
actuator spring forces have a much greater contribution.

Our initial assumption was the internal case pressure characteristics
shculd not deviate much from the measured line pressure. Studying the F-15
pump and manifold schematics a quick disconnect fitting in the pump case
drain line was found to have a significant orifice. A spring loaded
poppet closes off the cace drain lines when the pump 1s removed from the
manifold to prevent oil spillage. With the pump mounted the flow out the
case drain line is impaired by three slots in the quick disconnect fitting.
This opening had an area of about .04 inz. The addition of this orifice

in the case drain computation significantly improved the computer simulation.
The computer simulation could now reasonably predict the initial

respouse characteristics of the pump. Problems still existed however in

the subsequent pump reaction to the initial transient. The general trend was

that the pump model was extremely underdamped. Different values of hanger

damping were tried without much success. The hanger damping term accounts

for velocity dependent friction factors in the pump. These factors include

the effects of hanger motion on the changes in precompression and decompression

when the hanger is in motion, plus many other terms that cannot be accurately

measured. Values below 15 psi/in/sec for hanger damping did not improve

the pump damping characteristics. 1Initial transient pressures would undershoot

and the subsequent response was extremely underdamped. Values above 30 psi/

in/sec had exactly the opposite effect. A reasonable value of hanger damping

appears to be 25 psi/in/sec. :
The pump case volume was increased from 250 to 500 cubic inches to see ]

how the damping characteristics changed. The results of the run show that

the case pressure did not have the pressure dip on the initial transient.

The hanger oscillated at about 25 cvcles/second after the initial response

and did not- dampen as quickly as the data shown in Figure 10 in Section III.
The valve dynamics are an important part of the computer simulation.

An initial value of .001" was used as the overlap for the value spool. The

test results indicated a much larger deadband area, on checking with the

pump manufacturer it was found that .016" was a more nominal valwe for tie

compensator valve overlap rather than the value obtained originally. The
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effects of different valve overlap can be seen in the computer printouts
of the pump actuator or control pressure in Figures 165, 166 and 167. In
Figure 165 the measure actuator pressure vs time is overplotted on the

computer results at .012" valve overlap. At 7.5 milliseconds the pressures

show a rise to 1500 psi. Gther spikes occur at 13 and 19 milliseconds
and show little sign of decay. With a .016" valve overlap in Figure 166
the spike at 7.5 milliseconds is about 100 psi less and the pressure
wave at 19 millisecconds is gone. The run at .020" overlap in Figure 167
show that the pressure at 7.5 milliseconds drops to 1300 psi. At this

larger valve overlap the measured pressure trace is out of phase with

the predicted results.
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A pump turn-off transient simulation was run with MIL-H-83282 at a
temperature of 130°F and a steady state flow of 77 CIS. The data in
Figures 162 and 164 were input with the configuration data in Figure 168
for the HYTRAN program. The results of the simulation are shown in
Figures 169, 170, 171, 172, 173, and 174, All the overplotted pressure
data has been changed to absolute pressure to match the computer output.
Figures 169, 170 show that the first 40 milliseconds of the simulation
give good correlation with the actual data. At 50 milliseconds in Figure

169 the computed pressure drops to 2530 psi compared to the measured 2800 psi.
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The predicted pressure does rise at 6% milliseconds like the data
but overshoot in the caiculated pressure at 50 milliseconds prevented any
correlation. The relative phasing between the measured and computed data
completely falls apart after 120 milliseconds into the simulation as seen
in Figure 169. The actuator pressure data F65-03-PC (F denotes that the
data was played back through a 100 Hz filter) in Figure 171 matches the
predicted results up to 65 milliseconds. The maximum computed pressure
at 40 milliseconds is 2500 psi compared to the actual 2250 psi. The
resulting simulation shows high pressure responses while the test data
dampens out quickly. The mechanism by which the pump compensator is
able to dampen is not thoroughly understood and thus it is not included
in the computer model.

The filtered pump outlet pressure (Figure 172) gives a clearer
picture of the results shown in Figure 169 for Pl. The pump pressure
keeps dropping after 40 milliseconds instead cf leveling off as shown
by the data.

The initial response of the predicted hanger position in Figure 173
adequately simulates this pump parameter. At 40 milliseconds the measured
data shows a leveling off then a rapid dip. The computed values exhibit a
similar behavior but not as pronounced. Again one notes that the hanger
dampens quickly to its zero flow position while the predicted results
oscillate at about 25 Hz with minor damping. The valve position
plot in Figure 174 shows the computed value at 40 milliseconds to be
below the actual data. The predicted wvalve position after that time
does not reverse as the measured results indicate.

A simulation of a pump turn-on transient was run at 130°F. The data
in Figures 175 and 176 were the input boundary conditions. The input
configuration data is shown in Figure 177. The output data for the
computer simulation is shown in Figures 178, 179, 180, 181, 182 and 183.

The results for the turn-on transient are similar to the turn-off
in that the simulation deviates from the measured data around 40 milliseconds.
The computed response cf the pump after the initial transient is underdamped
when compared to the data. The resonant frequency is not as high a frequency
as for the computed turn-off transient. The actuator control pressure (Figure

180) has a 100 psi overshoot at 120 milliseconds which is smaller than the
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values in Figure 171. The hanger positicn (Figure 182) also shows a quicker
damping than the turn-off transient (Figure 173). The computed hanger position
does show a little dip at 39 milliseconds like the data. However, the predicted

value never reaches the actual maximum at 50 milliseconds.
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TR SEeRDATA RUN N, 65-C3¢PS AND ¢PC  F=15 PUMPRess(FIPN1T7}

' .
.. THE TRANSIENT RESPONSFE IS FRUM Te0,0 TO Ve «200 SECONDS AT TIME INTERVALS OF DCLTY= ,00220
- YITH OUTPUT PAIWNTS PLOTTED AT INTERVALS OF ’ »00200 SECONDS

—— e tm = mes . 2t ~

; .
FLLID DATA FOR HIL=H-RI2AR2 AT . 3000.0 PSIGs = - 50.0 PSIG AND 130.0 DEG F IN 10.0 DEG F STEPS

ST VST vIseostYy -  2200€E-01 «153E~0LIN®®2/SEC LT s
DENSITY « 2 790E~04 oTBLE~O4(LB=SEC*®2) /IN®®4
W ) o BULK MONULUS = ,223E+06 «187F+04PSI LT

VAPOUR PRESS.~ +200E+01 AT 13%0,0 DEG F

FIXeUP TAKEN AT LINE 13,VEL OF SOUND IN LINE & IS 15.4PER CENT IN ERROR .7 .
FIX~UP TAKEN AT LINE 18,VEL OF SAUND IN LING 6 IS 40,1PER CENT IN ERROR
FIX=UP TAKEN AT LINE 18,VEL OF SOUND TN LINE 7 IS... 5B.6PER CENT IN ERPOR . .0 LT7[LL
FIN-UP TAKEN AT LINE 18,VEL OF SOUND IN LINE & iS5 59.8PFR CENT IN ERROR
tl:i ReT* LENGTH INTERNAL waLL MNOULLS 0F DELX : CHARACTERISTIC VELOCITY OF
. . e e e e DIA . .....THICKNESS ____ ELASTICITY - ... IMPEDANCE SSUNS .
. 1 C13.6000 7T T L9020 T L0490 T 3008408 77 13.000C 64,1559 T e9785,6101
L 130000 . ......#3190 . . 0200 .. _ . «300Ev08 1340000 | . 5042548  __ 30844,4060
3 282.7500 777 T LARe0 T T L0580 T T L300£408° 10,0726 . 8.4696 $0255.3193
4 85000 . ... eRA4O .. w0580 . ... .. +300F+0B ...  8.5000 _ . ... b.469s 42500,0000
.8 ) T30,5000 7T Lake0 0 T T 406200 0 T 7T T .300F408 0 1041687 25,5947 50162,946)
6 . 4,0000 . Wb440 .. WC2RO . . J300F408 .. 4.0000 .. _._ . 25,5987 . 20000,000)
R | - T4.1250 7 T ,e020 0 T 7T L0490 T T ,300E+08 4.1250  6.1559 20625.0000
[} 4,0000 _ . <9020 . 0490 +300E+08 4,0000 4.1559 20000.0000
9 172.0000 29020 £ 0490 +300£+408 1041053 541559 A9785,6131
coMPe, 1 IMTEGEP OATA 1 9 0o = 1 =0 =0 =6 =0 =0 =0 <=0 =0 <=0 <=0 -0
cones, 2 INTEGE® DATA 2 5 4 1 =3 =2 =0 =0 =0 =0 =0 =0 <=0 =0 <0 =0
REAL DATA CAOD o 1 J2R70E¢04  L2000E+04  o1500F+00  .2500E¢00 O, «1600E=01  (6300E+00  ,6300€400
REAL OATA CARD # 2 77T J30705400 W 4000E+03  4700GE+02  J13002¢03  <4700E€03 L 2150E403  +3I500E=01  +2300£+02
REAL DATA CARD # 3 +3000E¢01  ,7500E¢00 =.3000E+00 .2000€-02 +1000E~02  .3000€-02 +20006-01  +2300€¢0)
REAL DATA CARD ¥ 4 W5000E+01  +4000E+0&  o3600E~01  .5000E=01 Oa +35006-02 .1000E401  +8000E+01!
, CONPS, . 3 INTEGER DATA .3 0w 0. 2 1 =0 ) =0 w0 =0 =0_.=0 =0 =0. =0 =9
T W cOMPEs o 6. INTEGER DATA .L°T. 7011 0. 3 . =6 =5 ., =0 =0 _ =0 =0 =0  =0.:=0, . ~0I 0.0 "
conee, S INTEGER DATA 5 2 3 & 1 =0 =0 =0 =0 =0 <=0 -0 -0 4 =0 =0
. REAL OATA CARD & “ 7 1777 .2200E~01 " '«6500E+00 =0, -0, w0e | LT =0 LT T =047 . =0
REAL DATA CARD ¢ 2 0, 1500E=01  .2000€-01  .2000£+00 =0. -0, -0, -0,
TTREAL DATA CARD & . 3.0 0.. ° .77 04 +6160E400 6160400 -0 .. 1.7 T=0, .. . =0, Y T
conre, 6 INTEGER DATA 6 4 1 § b <0 =0 =0 20 =0 =0 =0 =0 <=0 <«0 <0
CREAL DATA CARD 8 17 J2100E=01  +6500E¢00 =0, ~~° ~T=0, 7 . =0s  IIT w0, L T =0. -0, °
COnPe, 7 INTEGEP DATA T 1 0 6 T <8 =6 <=0 =0 =0 «0 =0 =0 =0 =0 =0
- COMP#, 8 INTEGER DATA ~ 8 " 41 "1 8 =97.=0 " =0 "=0.7=0 =0 _~0. =0 .0 .0 =0 =0
REAL DATA CARO o 1 540000  +6500€¢00 -0, -0, -0, -0, -0, -0
CONPS, 9 INTEGER DATA 9 61 T 1 .9 0 =0 =0 =0 .0 0.0 =077-0 =0  «0 =0
REAL DATA CARD # 1 «%000E+02 =0 -0, C . =0, -0, =0 =04 -0,

FIGURE 177. HYTRAN INPUT DATA FOR PUMP TURN-ON TRANSIENT
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e. Conclusions - Extensive testing has been completed on the F-15 instrumented
pump. Test conditions were established to try and reproduce many of the
operating conditions the pump would encounter during its normal life.
Actual pump operating time was approximately 150 hrs during the test
period. Obviously much more data was recorded that could possibly be
verified with the pump model. The extensive nature of the contract does
not allow for a more thorough analysis of the pump mcdel at this time.
A disapportionate number of manhours in relation to other component models
has already been spent on pump verification. This was because of the impoertance
of the pump in its relation to the remainder of the system. Further detailed
analysis will not take place under this current phase of the contract.

For the initial pump response, the PUMP51 subroutine adequately
predicts the measured data values. Since the initial transient is
usually the most severe, the results do reflect actual operating character-

istics. However, subsequent pump/system interaction is not accurately

computed. The calculations do reflect the PUMP51 subroutine stability.
If time where available for a more detailed study of the test data, the
pump subroutiie could probably be improved.

The errors in the subroutine may be attributable to a number of
factors. Lack of cavitation effects caused by improper filling of the
pistons; the effect of hanger angle and pump RPM; the forces on the hanger
contributed by the pistons due to bulk modulus effects at different pressures
and temperatures; friction effects on the actuator and valve; are some of
the factors not included in the pump model. Other sources of error
exist in the model itself. Not adequately defining the flow forces
on the valve, assuming linear leakage characteristics, the treatment
of hanger inertia could all introduce small errors into the simulation.

The data taken in the lab does contain much of the information needad
to produce a better pump model. However, it would be desireable to further
modify the F-15 instrumented pump by adding a case drain pressure transducer,

the lack of which has thwarted our verification effort.. A few tests would

then need to be rerun.
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4, FILTER MODEL VERIFICATION
In this section the test results obtained in the laboratory on a hydraulic

oil filter are compared to the HYTRAN computer program filter model (FILT81),
The oll filter used in the testing is shown in Figure 184, The filter speci-
fications are in Figure 185. All testing on the filter was performed on a
1/2 inch system with MIL-H-5606B hydraulic fluid. The filter subroutine
(FILT81l) is a model of an inline, non-~bypass filter with a standard cleanable
element and no moving parts.

The filter test series was run on two different system coufiguratiuns,
Table 8 contains a listing of all the test runs,

To study the pressure effects of a filter in a hydraulic system, it was
necessary to locate the filter close to the fast valve, This is an area of
high pressure transients when the valve opens or closes, The system config-
uration is shown in Figure 186, The long length of tubing in the system was

used to increase the reflection time of the pressure and flow transients,
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Table 8, TEST CONDITIONS FOR FILTER AC-900-61

TES1 FLOW RATE TEMP
ELEMEN? BUN F1LOW CONDXTION (c1e) DEG F

Filter at upstream posttion

Filter 50B01~-xx Turn-0ff 3.5 125
Without Element
" 50801 +xx Turn-On 38.5 125
" 50802-xx Turn-0ff 11.55 125
" 50B02+xx Turn-On 11.55 125
Filter With 51C0l-xx Turn-0ff 38.5 125
Element
" 51C01+xx Turn-On 38.5 125
" 51B02-xx Turn~-Of{ 11.55 125
" 51B02+xx Tura-Cn 11.55 128
Filter at Downstreas Positior
Filter With-  50A01-xx Turn-0f £ 38.5 125
Out Element
" 50A014xx Turn~-On 8.5 125
" S50A02-xx Turn-0ff 11.55 125
" 50A024xx Turn=-Oa 11.55 125
Filter with 51A01~-xx Turn-0f £ 38.5 125
Element
v 51A01+xx Turn-On 38.5 125
" 51A02-xx Turn~Off 11.55 125
" S1A024xx Turn-On 11,55 128

The following parameters were recorded in the laboratory for the test
ruus., Pl’ P2, Q2, P3, PQ’ Q4 and valve position. Pl' P2, P4 and QQ were
recorded on analog tape and played back later.

The filter was then placed near the upstream end of the system to observe
the flow effects since the flow amplitudes are greater near the accumulator,
The system configuration is shown in Figure 187. The following parameters
were recorded for the test runs: Pl’ Pz, Q2, P3, Q3, Pé and valve position.

P P, and Q3 were recorded directly on cassette tape.

1* P By
a. Computer Simulation With Filter Test Data — A turn-on transient at

125°F and 11.55 CIS flow was simulated with the HYTRAN program. The input

data used is shown in Figurec 188. The system input data is in Figure 189,
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FIGURE 189. RUN 50B02 HYTRAN INPUT DATA FOR FILTER MODEL VERIFICATION

For this low flow condition, a restrictor was inserted 10" downstream of the
control valve. This was done to simulate the annular volumes in the control
valve which totaled about 4 cubic inches., At this low flow condition, the
valve passages require a short time to completely fill on a turn-on transient,
This charging effect can be seen on the data taken in the lab, Therefore, it
was necessary for the computer simulation to completely define the volumes in
the control valve as an extra line length to obtain accurate results.

The filter was located in the maximum flow region of the system to study
the flow effects on the component (see Figure 187)., An interesting result
of the test, however, shows what a good frequency filter the hydraulic filter
is, The data in Figure 190 was taken 11 inches upstream of the filter. High

frequency pressure signals between 500 and 1000 Hz are superimposed on the
pressure trace., Figure 191 is the pressure data 17 inches downstream of the

filter, The high frequency content of the P2 trace has been filtered out as
the pressure signal passed through the filter component.

The computer output data shows good correlation to the actual pressure
values in Figures 190, 191, and 192, In Figure 192, the data signal contains
a sharp downward spike on the first pressure dip. This is due to the filling

of annular passages in the control valve,
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The flow plot of Figure 193 again illustrates the difference in the com-
puted and measured flowrates., The computed flow is an average flow value
across the entire velocity profile in the line. The measured flowrate of the
hot film anenometers is a localized segmented flow out of a small region of
the velocity profile. The data run in Figure 193 shows how the flow on turn-
on is less than the computed predicted results. As the velocity profile
developes in the line and the localized flow approaches the average flow, the
computed values show a better correlation to the data,

A turn-off transient at 125°F and 11.55 CIS flow was simulated with the
HYTRAN program using the measured data of Figure 194 and computer input data
in Figures 195. This run contained a hydraulic oil filter with a filter ele-
ment,

Figure 196 is an overplot of the computed pressure data 20 inches down-
stream of the filter with the pressure data measured 17 inches downstream of
the filter., Again, the program indicates reasonable correlation to the data
run, On the actual data plot note, the precursor downward pressure spike
prior to the first pressure peak due to the mechanical atress signal arriving
via the walls of the tube before the pressure signal.

Figures 197 and 198 are the flow plots for this simulation. The actual
steady state flow measured appears to be about 2 CIS lower than that predicted

by the program,
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Figure 199 is the input boundary pressure for the data of Figure 200,
The filter is located in the downstream location in Figure 186. Overplots of
the computer runs were made in Figures 201, 202, 203 and 204. For the recorded
data in Figure 203, note the dip prior tc the first pressure peak. This

precursor is due to the arrival of the mechanical line vibration before the

pressure wave, The plots shown in Figures 201 and 202 are the pressure traces
up and downstream of the filter component. There is a slight time delay in
the pressure signal as it passes through the filter bowl. Also note some

amplitude damping for this turn-off transient on the upstream pressure trace

(Figure 201). Both pressure and flow (Figure 204) computer printouts show

e R
o b

good correlation to the measured data.
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FIGURE 199. AC-900-61D1 FILTER HOUSING (NO ELEMENT) SOAOl-P1l TURN-GFF TRANSIENT
38.5 CIS 125°F
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The next computer simulation used 51A01-Pl data in Figure 205 taken in
the lab at 125°F and 38.5 CIS for a turn-off transient, Input with the Pl
data was the input system configuration and test conditions shown in Figure
206.

The plots in Figure 207 and 208 are up and downgtream pressures on either
side of the oil filter. All the overplots of pressure in Figures 207, 208
and 209 show good correlation with the computer predicted results., From the
pressure plots the actual plotting is off by a character making the simula-
tion appear to be in error in the predicted damping frequency.

The computed flow values in Figure 210 match well the anemometer test
measurements. The computer program predicted correctly the first flow reversal
magnitude and also some of the subsequent flow magnitudes.

b. Observations — The filter component was located near the fast closing
control valve in Figure 186 to study the filter's volumetric effects on the
system during turn-on and turn-off transients. An interesting result obtained
from the lab data chowed the filter with an element, attenuated the pressure
wave less than a filter without an element for turn-off transients. This

can be graphically shown by overlaying Figures 201 and 207 (without element).
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These pressures were recorded 18" upstream of the filter. The third and fourth
pressure dips are at about 2500 and 2700 PSI respectively. While the corres-
ponding dips in Figure 205, a filter with an element, are about 2400 and 2600
PSI. The remaining pressure data taken at the P3 and P4 transducer positions
for both runs also indicate the same results.

In Figure 210, the first flow reversal has a magnitude of 27 CIS which is
4 CIS larger than the corresponding flow in Figure 204. Subsequent flow
reversals also indicate similar results., The flow data confirms what the
pressure data has shown, The flow rates in the filter with an element are
slightly higher than those in a filter without an element resulting in less
pressure attenuation.

At first glance, it would appear that the data is mislabeled, but the
low flow rate runs (51A02, 51A02) also indicate this phenomena, and the
HYTRAN computer program also predicts the same results,

The reasons why an empty filter housing would attenuate a pressure signal

more than a filter with an element in this system configuration is not clearly

understood. Perhaps the charging time constant of a filter with an element
changes significantly as the element is removed resulting in the attenuation
difference,

c. Using Filter Model With Head Exchanger Test Data - An attempt was

] made to use the filter subroutine (FILT81) as the model for a heat exehanger
with the test data measured in the lab on a F-4 utiiity heat exchanger., Table
9 contains a summary of the tests that were performed. The system configura-

tion is shown in Figure 211,

A TABLE 9
“ TEST CONDITIONS FOR F-4 UTILITY HEAT EXCHANGEK

Transient Flow Temeprature

Run No, Condition (GPM) (°F)
] 62-08-XX Turn-0f f 3 125
62-08+XX Turn=-0On 3 125
62-~10-XX Turn-0f £ 3 210

. A run was made using the test conditions and the 62-08+P4 and 62-08+P5
data as the boundary conditions. The results of the turn-on simulation is shown
in Figure 212, 213, 214 and 215. The simulation indicates that the filter

model was insensitive to the return line transients, Figure 212 is the posi-

b tion immediately downstream of the fast control valve shown in Figure 211,
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The sharp dip in return pressure to 50 psi at 43 milliseconds is not simu-
lated by the computer program. Also at 200 milliseconds the calculated pres-—
sure is about 100 psi above the data. The computed data in Figure 215 matches
the P4 input data characteristics, but the pressure wave is sharply attenua-
ted by the volume of the model and does not pass through to the upstream side
as shown by the conputed output in Figure 214,

From the simulations made using the test data, the filter model is not
adequate in simulating a heat exchanger in a return line., Further work on
the model would be required for adequate verification,

d. Conclusions - The HYTRAN filter model calculations of flows znd pres-
sures compare reasonably well with the test data measured in the lab., Because
of the small filter used, there was very little difference between the filter
with and without an element. The basic difference between the filter and the
line was that the filter supplied more attenuation to the pressure signal and
slowed down the wave speed slightly.

Return side test data showed that the filter model was not adequate for

use as a heat exchanger.
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5. CHECK VALVE MODEL VERIFICATION

The test results cbtained in the laboratory on a MCAIR miniature check
valve are compared to the HYTRAN computer program check valve model (CVAL3l).
The check valve used in the testing is shown in Figure 216, The testing was
performed on a 1/2 inch system with MIL-H~-5606B hydraulic fluid.

The subroutine CVAL3l models a simple undamped check valve. The check
valve is assumed to have a variable orifice characteristic between the fully
open and fully closed positions. Reverse flow can take place transiently
until the valve closes.

The model used to calculate the steady state pressure drop assumes a
straight line flow pressure d.op characteristic between the cracking pressure
and the fully open pcsition. In the transient analysis, the flow through the
valve is calculated using the normal valve equations, with the valve orifice
area being proportional to the vaive displacement. The check valve test series
was run on the system configuration shown in Figure 217,

The following parameters were recorded in the laboratory for the test

runs: Pl’ P2, QZ’ P3, P4 and v;lve position. Pl, P2, P3, and P4 were re-
corded directly onto cassette tape,
The test conditions are shown in Table 10.
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FIGURE 216. MCAIR MINIATURE CHECK VALVE
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TEST RUN #

SPECIMEN

MCAIR Miniature

Check Valve 55-01-XxX#*

7™M92-~8
55-01+XX
55-02-XX
55~02+XX
55-05-Xx
55-05+XX
55 :06-XX
55-06+XX

. 11IN.
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(B—{
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T {
u
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RESERVOIR CONTROL VALVE
LOAD VALVE F-15 JES
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4 T

Q2 Pq -d//// t
CHECK VALVE
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FROM PUMP

TABLE 10. TEST CONDITIONS FOR MCAIR MINIAIURE

CHECK VALVE 7M92-8

FLOW CONDITION FLOW RATE TEMP
(C1S) (DEG F)
Turn~0f f 38.5 125
‘furn-0n 38.5 125
Turn-Off 11.55 125
Turn=-On 11.55 12§
Turn-0f § 38.5 210
Turn-On 38.5 210
Turn-Off 34.5 210
Turn~On 38,5 210

* - XX denotes measured data parameters.




a., Computer Verification of Check Valve Model with Test Data - The

first data run of the MCAIR miniature check valve to be compared to a computer
run was for a turn-off transient at 125°F and 38.5 CIS. The valve closing

time was determined from the P, data and the acoustic velocity in the tube,

The data from Figure 218 was iiput into the computer program with the system
schematic information in Figure 219, The oscillations in the Pl pressure occur
when che check valve poppet is seated on a turn-off transient, The resultant
pressure wave generatad by the valve closure oscillates in the 22-inch line
between the accumulator and the check valve.

Figure 220 is a plot of the P3

sure at the P3 position 20 inches downstream of the check valve. The computer

data cver the computer predicted pres-

results show good correlation on the first three pressure peaks in Figure 220.
From the fourth peak on, the computed pressures are not damped enough to con-
form to the actual plotted data run, Figure 221, 396 inches upstream from the
check valve, also indicates the same results. The average steady state pres-
sure in the computer simulation is about the same as the actual test results,
The first initial pressure rise corresponds te the closing of the check
valve with a small local flow existing in the downstream end of the 417 inch

line. As the pressure drops off the flow proceeds towards the check valve.
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FIGURE 218. 7M92-8 CHECK VALVE 55~01-P1 TURN-OFF TRANSTENT
38.5 CIS 125°F
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¢ Because the check valve poppet is closed, the pressure remains at a level

higher than the source pressure. The rectified effect results because pressure

and flow oscillations in the 22 inch line are not able to completely override

SRR e e = e

the forces on the poppet which keep the valve closed.

The check valve model does not account for displacement flow due to poppet
motion, variations in orifice characteristics with poppet position, or second-
ary pressure drops due to other flow restrictions, Perhaps the most signi~-

‘ ficant effect not modeled in the CVAL3l subroutine is the flow forces on the
poppet. These were not included initially because they are not well defined
theoretically and really depend on the actual valve geometry.

The majority of the error in Figure 220 can thus be attributed to flow
force effects on the poppet. They are the most predominant forces present
in the check valve in this test configuration during the turn-off transient,

An attempt was made to simulate some of the axial flow forces in the
check valve by equating it with the net change of momentum as shown in the
following expression:
| FA -2 % Cd ®AP h W ¥}

] where

‘ C, = discharge coefficient for valve shot width (.65 assumed)
AP = pressure drop across the poppet

W = peripheral width of the orifice

1 = axial length of the orifice
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The area of the opening was approximated by the following algorithm:
wl=A=KZ3X /(1 + Xp)

where

A

orifice opening

constant determined from max poppet opening and check valve

§i

inlet area
Xp = poppet position
The net axial force was

= 2 % * * *
FA 2 Cd AP K X (1 + Xp)

The computer simulation using Pl input data was again run with the axial
flow force included in the check valve model. The P3 data is overplotted with
the computer run in Figures 222 and 223, The simulation shows better corre-
lation with the data but not a significant improvement.

The computer output flow plots are shecwn in Figures 224 and 225. The
data runs for these two plots are plotted over the computer runs. Figure

224 shows the flow oscillating in the 22 inch line between the accumulator
and chnck valve. This corresponds to the Pl pressure trade in Figure 218.

Figure 225 is the flow 20 inches upstream of the check valve,

The HYTRAN computer simulation of a turn-on transient at 125°F and 38.5
CIS was run using the input data of Figure 226 and system data from Figure
227. The computer output graphs of pressure overplotted with the test data

are shown in Figures 228, 229, and 230,
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The initial steady state pressure of the test data in Figure 228 is
about 3020 psi while the initial steady state pressure on the P3 data in
Figure 229 is 3260 psi., This apparent discrepancy in steady state éressure
can be explained by noting the P2 and P3 pressure transducer locations and
the initial system condition. The P2 pressure transducer is located 11 inches
upstream of the check valve while P3 is 17 inches downstream of the same
valve and the control valve is closed, When the control valve was originally
closed, the pressure was elevated above source praessure in the line between
the check valve and the control valve., This high pressure still remains locked
between these valves, thus the pressure differential.

The HYTRAN steady state program initializes the pressures in the line
upstream of the check valve to the first Pl data value and pressure downstream
of the check valve is set to the initial P3 data value.

The computer calculated flow plots are shown in Figures 231 and 232
plotted over the data runs. The data runs were played back from analiog tape.
The timing of the valve closure is different on these runs due to the de~
creased sensitivity of the taped recording. Therefore, the data rumns slightly

underlap the computer results in Figures 231 and 232,
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b. Verification of the Check Valve Model with Return Side Test Data

The MCAIR miniature check valve was tested in the return line configura-
tion shown in Figure 233, The list of test runs is in Table 11.

The computer output for a turn-off transient is shown in Figures 234,
235, and 236. In Figure 235, the predicted steady state values are about 20
psi toohigh. At 130 milliseconds the computed pressure drops to 20 psi.

The actual drop in pressure occurs at 140 milliseconds.
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FIGURE 233. RETURN SIDE TEST CONFIGURATION
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TABLE 11
CHECK VALVE - RETURN TEST SERIES

Steady State Temperature

Run No. Transient Condition Flow (CIS) (°F)
55=-07-XX Turn-0ff 38.5 125
55=-07+XX Turn~On 38.5 125
55-08-XX Turn-0f £ 11.55 125
55-08+XX Turn~On 11.55 125
55-09-XX Turn-0ff 38.5 210
55-09+XX Turn-On 38.5 210
55-10-XX Turn-0ff 11.55 210
55=-10+XX Turn-0On 11.55 210
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3, Conclusions - The HYTRAN check valve model compares favorably to the
test data measured in the lab. Discrepancies exist between the data and the
mathematically predicted results as already noted in this section. The major-
ity of the model error can be attributed to the absence of adequate flow force
effects on the poppet in the calculation. The actual forces are not well de-
fined theoretically and really depend upon the actual valve geometry,

Attempts to include axial flow forces in the calculations contributed some
improvement for the 125°F and 210°F, 11,55 and 38.5 CIS turn-off transient cal-
culations.

Since the CVAL3l subroutine was written for a general check valve it

appears that this model is completely adequate for what it was designed to

accomplish,
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6. RESTRICTOR MCDEL VERIFICATION

In this section the test results obtalned in the laboratory on a Lee Jet
and a Lee Visco Jet are compared to the HYTRAN computer program restrictor
model (REST41). The restrictors used in the testing are shown in Figure 237.
The Lee Jet contains a calibrated orifice and two matched filters. The orifice
was measured to be approximately 0.00945" in diameter. The Lee Jet was Installed

in a 1/4" AN union for testing.

THIS IS THE VISCO JET PRINCIPLE
TANGENTIAL SLOTS AND SPIN CHAMBERS

DECELERATION -

our ' ) ' IN

LEE VTSCO JET (.G31 DIA)
VDLA 6810880D

Ve

MITRI
.

LEE JET (.009 DIA)
JETA 1875850D

FIGURE 237 LEE JET AND LEE VISCO JET

The Lee Visco Jet consists basically of slotted discs mounted one upon
the other to form an extremely complex fluid passage. A reasonable degree of
viscosity compensaticn without the use of any moving parts results from this
arrangement. The .031" diameter miniature insert stacked disc tvpe Visco Jet

has the same pressure drop rating as the .009" dia Lee Jet.
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The Lee and Visco Jets were compared to determine if there was any
appreciable attenuation effects due to the presence of the stacked discs
over the ordinary orifice. The testing was performed on a 1/2 inch system with
MIL-H-5606B hydraulic fluid.

The subroutine REST41 models a fixed, two way, orifice restrictor with
two connections. The coefficient of discharge is assumed the same for flow in
elither direction. It is assumed that the restrictor does not have any ancillary
parts and that the oil volume is sufficiently small so integration is not
required.

The restrictor test series was run on the system configuration shown
in Figure 238. The system pressure line was teed into about 45" upstream of
the control valve. The test section consisted of a 15 1/2" length tube, twe
19 1/4" instrumented sections containing the four pressure transducers, the
test specimen and a shut-off valve which was closed for the testing. The other
end of the valve was connected to the return line for bleeding of this short

bypass section,

- DRILLED OUY
/  ANB158 UNION (TYP)

T
, % \

\
/ ngzr\:\ﬁv\fmve DRILLED OUT (0.44 IN.)
206-1/2 r\
\ _, TICNO.2 /
N *?""c“kh"'""""_—_qﬁ“l —G00— - 7/
~ (D Sl -8 pllE; r‘—
TO RESERVOIR T/C NO. 3 ‘ I 3
P4  P3 P2 PV -
; 4 " - ' 16172 \J
L19-1/_4 qL 5 0*\19:/4 >
SHUT-OFF / TEST 1/4 IN. BACK TO BACK
VALVE { SPECIMEN
1/4 IN. BACK TO BACK TO PUMP PANEL

AN919-10C REDUCER
{2 PLACES)

FIGURE 238 TRANSIENT TEST CONFIGURATION FOR LEE JET AND VISCO JET
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The following parameters were recorded in the laboratory for the test
runs: Pl’ P2, P3 and P4. The anemometers were not used because they could
not accurately measure the low flow rates in this short section.

The test conditions are shown in Table 12.

TABLE 12 TEST CONDITIONS FOR LEE JET AND LEE VISCO JET

Test Run # Flow Flow Rate Temp
Spec imen Condition (CIS) (DEG F)
Lee Jet (009 dia) 60-01-XX* Turn-0O1 f 38.5 125
JETA 1875850D

" 60-01+XX Turn-On 38.5 125

" 60-05-XX Turn-Off 38.5 215

" 60-05+XX Turn-On 38.5 215
Lee Visco Jet (.031 59-01-XX Turn-0f f 38.5 130
Dia) VDLA 6810880D

" 59-01+XX Turn-On 38.5 125

" 59-05-XX Turn-Of f 38.5 215

" 59-05+XX Turn-On 38.5 220

* - XX denotes measured data parameters

a. Computer Simulation with Restrictor Test Data
A turn-off transient at 125°F and 38.5 CIS was simulated with the HYTRAN

computer program using the input data of Figure 239 and the system data shown

in Figure 240. The output pressure plots are shown in Figures 241 and
242,
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The computer results show excellent correlation to the laboratory
test data for both up and downstream of the Lee Jet restrictor in the dead
ended line. The oscillating pressure shown on the 239 input data curve
occurs in the line from the point where the system is teed off to the test
specimen. This resonance was simulated by the computer program as indicated
in Figure 241. The maximum pressure obtained in the line upstream of the Lee
Jet was 4000 psi. This was a 1307 psi jump from the steady state level.
Downstream cf the Lee Jet the maximum pressure reached was about 3025 psi
as shown in Figure 242. This was only about a 320 psi rise above the initial
steady state pressure.

No flow measurements were made in this dead ended system because of the
extremely low flow rates involved. However, the computer program did compute

the flows in the line as shown in Figure 243. Th=2 flow is upstream of the

restrictor.
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FIGURE 243 60-01-02 TURN-OFF TRANSIENT

A turn-off transient at 13C°F and 38.5 CIS was simulated on the HYTRAN
computer program using the input data for th= Lee Visco Jet in Figure 244.
The computer output pressure and flow plotg are shown in Figures 245

and 246. The computer pressure plots show goud correlation with the lab

data.
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There was also no appreciable attenuation effects through the Visco
Jet as was initially suspected. This can be seen in Figure 246 which was
downstream of the Viscu Jet. The Visco Jet appears to behave the same way
transiently as the simple Lee Jet with the orifice.

A turn-on trarsient at 125°F and 38.5 CIS was simulated with the computer

program using the data input from Figure 247 and the computer input informa-

tion given in Figure 2456. The output pressures and flows are shown in Figures

249, 250 and 251. ‘The pressure data indicates good correlation with the

computer ocutput plots. The maximum pressure reached upstream cf the

Visco Jet was about 3200 psi as shown in Figure 249.

b. Observations =~ To show the relative phase relationship between

the input and output pressures of a Lee Jet, P2 and P3 were plotted versus
time in Figure 252. The data run plotted was a turn-off transient at
125°F and 38.5 CIS. The plot shows that over a 180° cycle of P2 the P3

pressure just rises, while during the next 180° of P2, where P2 falls then

rises, the P3 pressure just falls.

Plot of P2 over P3 for a turn-on transient follow exactly the same
relationships as well as P2 and P3 plots for the Lee Visco jet.

c. Conclusions - The HYTRAN restrictor model (subroutine REST41)
calculatisns of pressures compare reagonably well with the test data
measured in the lab. The results indicate that the restrictor model

is relatively good.
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7. ONE-WAY RESTRICTOR MODEL VERIFICATION

This section test results obtained in the laboratory on an F--15 system
type restrictor (CONAIR PN 286-5590-105) are compared to the HYTRAN computer
program éne-way restrictor subroutine CVAL33. The testing was performed on a
1/2 inch system with MIL-H-5606B hydraulic fluid.

The restrictor's configuration and dimensions are shown in Figure 253.

The CVAL33 subroutine models a simple undamped one-way restrictor. The
check valve portion of the restrictor is assumed to have a variable orifice
characteristic between the fully open and fully closed positions. Some reverse

flow can take place transiently through the orifice when the valve closes.

Free
Flow

3 'l;.

Inlet I.D.—r LOutlet 1.D.

FIGURE 253 TYPE 33 ONE-WAY RESTRICTOR

The model used to calculate the steady state pressure drop assumes a
straight line flow pressure drop characteristic between the cracking pressure
and the fully open position. In the transient analysis the flow through the
valve is computed using a parallel orifice arrangement. The flow through the
valve area is proportional to the valve displacement and the flow through the
orifice is proportional to the orifice diameter and discharge coefficient.

The restrictor test series was run on the system configuration shown in
Figure 254,

The following parameters were recorded in the laboratory for the test
runs: Pl’ P2’ QZ’ P3, P&’ Q3 and valve position. Pl' P3. PA and Q3 were

recorded directly onto cassette tape.
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FIGURE 254 TRANSIENT TEST CONFIGURATION FOR ONE-WAY RESTRICTOR

a, Computer Simulation with One-Way Restrictor Test Data

The first data run of the CONAIR one-way restrictor to be compared to a
computer run was for a turn-off transient at 130°F and 38.5 CIS. The valve
closing time was determined from the PA pressure data and the acoustic velocity
in the tube. The data from Figure 255 was input into the computer program
with the input data shown in Figure 256. The results are shown over plotted
with data in Figure 257, 258, 259 and 260.

The one-way restrictor is installed so that the flow is in the restricted

direction, thus in Figures 257 and 258 the pressure drop across the restrictor

is over 300 PSI.
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Figure 259 is a plot of the P4 data over the computer predicted
pressure at the P4 position 18 inches upstream of the control valve. The
computer results indicate good correlation with the test data. Figures
257 and 258 on either side of the restrictor also show favorable comparisons,
The computed maximum value for the first peak pressure is not pletted
in Figures 257 and 258, For this HYTRAN program output only one point
is plotted for every ten that are calculated. The test data indicates a max
velue because all the sampled data points are plotted. For Figure 258
the computed max value was 3550 PSI. The measured value was 3660 PSI.

The restrictor model does not account for displacement flow due to
poppet motion, variations in orifice characteristics with poppet position, or
secondary pressure drops due to other flow restrictions. Axial flow forces
however are included in the one-~way restrictor model. The net axial force

is computed as:

F, = 2%C *AP*ARFAC (L)
where

Cd = discharge coefficient for valve slét width (.65 assumed)

AP = pressure drop across the poppet

ARFAC = area subjected to flow forces

The computer output fiow plot is shown in Figure 260 with the data
run plotted over it.

The HYTRAN computer simulation of a turn-on transient at 125°F and
38.5 CIS was run using the input data of Figure 261 and system data
from Figure 262. The computer cutput graphs of pressure overplotted with
the test data are shown in Figures 263, 264 and 265.

The computer results correlate well with the test data for both up and
downstream of the one-way restrictor. The P2 test data is considerably noisier
than the other pressure data because it was played back from an analog tape
unit.

The computer calcilated flow plot is shown in Figure 266 plotted over
the data run. The test data for the initial flow peak does not reach
the predicted results. This discrepancy exists because the anemometer does

not measure the bulk or average flow in the tube but only local velocity.

¢, Conclusions - The HYTRAN one-way restrictor model (subroutine CVAL33)
calculations of pressures and flows compare reasonably well with the test
data measured in the lab. A few discrepancies exist between the data and
mathematically predicted results as already noted. The results indicate

that the model is adequate for the conditions tested.
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8. HOSE MODEL VERIFICAYION

The test results obtainad in the laboratsry on a 1/4" and 5/8" flexible

hose are compared to the HYTRAN computer program hos~ model in the line subroutine.

The testing was performed on a 1/2 inch system with MIL-B-5606B hydraulic fluid.
The hose model is incorporated as part of the iine g'tbroutine in the
HYTRAN program. The line subroutine uses the classical distributed parameter
wave equations to model the lines and hoses. The equations are solved using
the method of characteristics and finite difference techniques.
In the line subroutine, an effective bulk modulus is computed for the
hose combining both hnse and fluid characteristics. The effective bulk modulus
is calculated from the following equation:

1
1 1 + 1

BULK BULK BULK
e hose

(1)

oil

The velocity of sound in the hose is then computed using BULKe. The
BULKe and velocity of sczund calculation are the basic differences between
the line and hose modéls in the line subroutine.

The hose test series was run on the system configuration shown in

rigure 267.

LOAD VALVE TEST SPECIMEN
F-4 PC RESERVOIR CONTROL VALVE

[ ——a.l | )
— 426 iN.- *
Py P3 , 02
'r']"z

{ 0
17N Qg F-16 JFS
‘;QEE: ACCULULATOR
~ — —426IN. > I
CHECK VALVE
TURBINE FLOWMETER
FROM PUMP

FIGURE 267 TRANSIENT TEST CONFIGURATION FOR 1/4 IN. AND 5/8 IN. FLEXIBLE HOSES
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The foliowing parameters were recorded in the laboratory for the test

runs: Pl, P2, QZ' P3, P&’ Q4 and valve position. Pl' P3, P4 and Q4 were

recorded directly onto cassette tape.

The test conditions are shown in Table 13,

TABLE 13 TEST CONDITIONS FOR 1/4 IN. AND 5/8 IN. STEEL BRAIDED TEFLON HCSES

Test Run # Flow Conditiom Flow Rate Temp

Ej Specimen (Cis) (Deg F)
. 1/4" Dia x 22"  57-01-XK* Turn-Of £ 38.5 130
oy LG, steel braided

E Teflon hose 57-01+XX Turn-On 38.5 130

E: P/N 730900-4-

: 0240 57-02-XX Turn-Off 11.55 130
. ' 57-02+XX Turn-On 11.55 125

57-05-xX Turn-0ff 38.5 210
57-05+XX Turn-On 38.5 210

J 57-06-XX Turn-0ff 11.55 210

3 57-064+XX Turn-On 11.55 210
E 5/8" dia x 58-01-XX Turn-Off 38.5 125
E 24" Lg

Steel Braided 58-01+XX Turn-On 38.5 125

Teflon Hose

P/N 730900-10- 58-02-XX Turn-0ff 11.55 125

0240
58--02+4XX Turn-On 11.55 125
58-05-XX Turn-0ff 38.5 210
58-05+XX Turn-On 38.°¢ 210
58-06-XX Turn-0Off 11.55 210
58-06+XX Turn-On 11.55 210

* - XX denotes measured data paramaters
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a, Computer Simulation with Hose Test Data - A turn-off transient in a

1/2" system with a 1/4" dia x 19" long steel braided teflon hose was
simulated using the data of Figure 2h8 and the Input data in Figure 269.
Tha HYTRAN program conditions were s« t at 38.5 C1S and 130°F. The computer
output pressures and flows are shown in Figures 270, 271, 272 and 273.

The data in Figure 270 was recorded approximately 19" upstream
of the 1/4" hose. The computer results indicate good amplitude correlation
with the data. However the predicted frequency of the decaying pressure
waveform is slightly less than the data frequency. 1In Figure 270 at
0.2 sec the computer results are in error by about 6 milliseconds. The
computer predicted data in Figure 271 immediately dowmstream of the
19" long hose and Figure 272, 17" downstream of the hose indicate the

same resuvlts.,
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FICURE 268 .25 IN. STEEL BRAIDED HOSE
57-01~P1 TURN-OFF TRANSIENT
38.5 C1S 130°F
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FIGURE 273 57-~01-Q2 TURN-OFF TRANSIENT

The source of this discrepancy in frequency may be attributable
to the lack of apprcpriate turbulent damping characteristics in the Jynamic
friction subroutine DFRICD. 3ince little is known about the effects of
dynamic friction under turbulent flow conditions, DFRICD uses the same
equations to calculate turbulent as well as laminar flow pressure drops
under dynamic conditions. A computer run was made to determine the effect
of leaving the turbulent pressure drop update out of the simulation. Figure

274 shows a minor increase in the amplitude of the decaying waveform

and a slight increase in the computer predicted frequency. Figures 275
and 276 indicate the same results. A better update for dynamic losses under
turbulent conditions would improve the hose simulation.

Another source of the frequency error in Figure 268 could come from

the characteristic solutions of different line sizes in a long length of

Y

tubing. Unfortunately test data is not available tu conform or dispute

this.
A turn-on transient was simulated with the HYTRAN program using the

+rest data from Figure 277 and the input data of Figure 278, The output

pressures and flows are shown in Figures 279, 280 and 281.
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Figure 279 shows a small frequency error between the computed frequency
and test results. The first predicted pressure peak at .06 seconds is
about 100 psi below the actual value. Likewise for Figure 280 the computed
reflected pressure wave amplitude for the turn-on transient is less
than the test data. Under predicting the amplitude of the reflected
pressure wave also occurred for the 1/2" x 30' line simulation. This may
be due to poor dynamic pressure loss predictions for the turbulent flow
region in the HYTRAN program.

A 5/8" steel braided Teflon hose was next used in the computer

simulation at 38.5 CIS flow and 125°F with the input data of Figure 282

and Figure 283. The results are shown in Figures 284, 285, 286, 287 and 288.

In Figure 284 the computer predicted output has a slightly higher
frequency than the test results.
This discrepancy between the predicted and actual damping frequency

can be due in part to the lack of an adequate turbulent pressure loss term

in the DFRICD subroutine.
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A turn-on transient with a 5/8' hose was simulated to observe whether
it would indicate the same under prediction on the calculation of the
reflected pressure wave as in run #57-01 with the 1/4" hose. After
inputting the data of Figure 289 and Figure 290 into the HYTRAN program,
the results were as expected. Figures 291, 292 and 293 all show that
between .06 and .08 seconds the computed pressure values are less than
the test data. The pressure plors aiso show that the frequency of the
predicted values 1is actually faster than the measured results. This
follows the same pattern as the turn-off transient for the 5/8" hose.

The anemometer flow data is shown plotted over the computer results

in TFigure 294.
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b. vonclusions - The hose model calculations of flows and pressures did

not compare well with rhe test data. For the 1/4" hose the computer results

predicted a lower frequency than was actually measured. However, the
amplitudes on the computed pressures match well with the test results.
The 5/8" hose computer results showed a higher frequercy than the test
data. The amplitude correlation with the computed pressures was good .
In turn-on transients for both hoses the HYTRAN program consistently
under predicted the maximum pressure amplitude of the test data.

o TwO STAGE RELIEF VALVE MODEL VERIFICATION

The test vresulis obtained on a two stage high response relief valve
are compared to the HYTRAN computer program valve model - subroutine CVAL34.

The tesL on the relief valve was performed on a one inch system with MIL-H-83282,

Subroutine CVAL34 models a two stage relief valve of the type shown in
Figure 295. This is a high response device used to limit pressure surges
and prevent system overpressures due to pump failure.

The relief valve is assumed to have a variable orifice characteristic

between the fullv open and fully closed pesitions. The etfects of Flow

forces on the poppet are not included since these are not very well defined

theoretically and depend on the actual valve geometry.
In the steady state section the relief valve is assumed to be closed with

no pilot flow. 1In the transient analysis the flow through the valve is computed

witlh the normal valve equations. The poppet position is predicted from
the previous time step and is used to compute the valve orifice area.
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The two stage relief valve test series was run on the system configuration
shown in Figure 296.

The following parameters were recorded for the test rumns: Pl, P2, P3,
P4, P5, Q5, P6, P7 and XV - the valve position.

The test runs are listed in Table 14. Typically a baseline run was
made without the relief valve in the system, then a run was made with the

relief valve. Only turn-off transients were investigated.

TABLE 14
TWC STAGE RELIEF VALVE TEST RUNS

Run Number Test Condition Steady State Temperature (°F)
Flow (CIS)

72-05-XX Turn-of f 100 132
72-06-XX " 150 131
72-07-XX " 100 207
] 72-08-XX " 150 211
i 72-09-XX " 100 131
\ 72-10-XX v 150 132
g 72-11-XX " 100 210
72-12-XX " 150 212

XX-Denotes run parameter
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The first four test runs on the valve (72-01-XX thru 72-04-XX) were made

without the accumulater shown in Figure 296 in the system. The upstream

boundary condition at the Pl transducer was found to be too nonisy for use in

the computer program. The insertion of the accumulator downstream of the pump

did provide a better boundary condition,

a., Computer Simulation Without the Test Data - Test results indicated

that the control valve used to generate the transients was bouncing

on closure. An attempt was made to simulate the exact valve characteristics.

But the strain gage device on the spring used to close the valve was not

capable of determining an actual poppet position. Therefore adequate simula-

tion of the two stage relief valve was not possible.




A computer simulation was made without the test data. The boundary
conditions chosen were similar to the actual test data. This baseline

run was made without the two-stage relief valve in place. Figure 297 is the
printout of the pressure zero inches along line number two. (See Figure
296). The initial peak pressure reaches 375 psi and does not dampen
appreciably in the simulation. The flow at this same point 1is in Figure

298. The pressure 20 inches along line number three in Figure 299 also

reaches 3750 psi.
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3 Next a computer run was made at 100 CIS with the two-stage relief

valve in the system. In Figure 300 zero inches along line 3 the peak
pressure reaches the relief valves cracking pressure of 3750 psi at

22 msec into the simulation. The relief valve opens and the pressure

drops to 3200 psi in less than 2 msec. The flow in line 3 quickly increases
as the two stage relief valve opens and then gradually closes until fully
4 closed at 130 msec as shown in Figure 301. Figures 302 and 303 are plots of
the poppet position and internal cavity pressure for the valve. The cavity

pressure is typically system pressure until the valve relieves then it falls

to system return pressure. The pressures and flows immediately downstream

of the relief valve are shown in Figures 304 and 305.

FIGURE 300 PRESSURE 0,0 INCHES ALONG LINE 3
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b. Observations - The effects of the valve in the system can readily be

seen by comparing a valve run with its baselinea counterpart. The main

effects are observed at the 150 CIS flow rate. Figure 297 shows that

pressure in the dead ended line reaches about 4000 psi a short time after

the fast control valve is closed. With the two stage high response relief
valve in the system Figure 300 shows an initial pressure spike only

reaching the valve relief pressure of 3750 psi. Comparable resuits can be
observed for the remainder of the test runs.

c. Conclusions - The malfunctioning control valve did not provide the
necessary sharp turn-oft transients in the test system, and prevented
the computer program verification of the :Iwo stage relief valve model.
The computer runs made without the test data indicate that the relief

valve model reasonably simulated the actual valve's operating characteristics.
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10. HRYTRAN PROGRAM VERIFICATION FOR PRESSURE EFFECTS

In this section the pressure =2ffects on test results are compared
to the HYTRAN computer program simulation runs. The testing was performed
on a 1/2 inch system with MIL-H-83282 hydraulic fluid. The pump operating
speed was 4000 KPM.

The pressure effects test series was run on the system configuration

shown in Figure 306. The following parameters were recocrded for

v

the test runs: Pl’ P2’ QZ’ P3, P&, PS, QS’ P6, P, andé contrnl valve

i

R CE S¥ S

position XV.

The data recorded in this test series is designated 71.

Table 15 contains an itemized list of the pressure effects tests.
Test conditions were established to study the changes to the system response
at pump operating pressures ranging from 1507 to 3750 psig. The pump cutliet
pressure was varied by adjusting the preload pressure of the compensator
spring. The effects of different flow rates and temperatures at these
outlet pressures were also monitored.

a. Test Results and Computer Program Verification ~ The first

simulation was made at a pump outlet pressure of 2000 psig. The pump
provided a steady state flow of 100 CIS before the control valve
~was turned off. The data in Figures 307 and 308 were input with the
system configuration data in Figure 309 at a temperature of 134°F.
The results of the simulation are shown in Figures 310, 311, 312 and 313.
The P6 transducer was located about 2 inches from the entrance of the F-4 f
reservoir. Figure 314 shows that the pressure transducer oscillated .
at a high frequency during the transient. A cavity exists between the
pressure transducer diaphram and the tube outer wall. The transducer
location at a peak pressure or mechanical standing wave location coupled
with the small volume could account for this resonant corndition as shown
in Figure 314,
The computer results show excellent correlation with the measured

data at this pressure condition. 1In Figure 310 the program accurately

g

predicts the measured peak pressure at 28 milliseconds. There is about a

4% difference in phasing between the predicted results and the lab data

at 0.2 seconds. This slight error may be attributable to many factors,
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relating to the data and the HYTRAN »program. The data errors may result
from an inaccurate temperature reading or valve closing time. The main
source of program errors come from the dynamic friction algorithm and the
lack of adequate bulk modulus data for the hydraulic fluid. Desp'te all
of these factors, the predicted pressure valves and the signal phasing

are within 5% of the measured data,

TABLE 15 PRESSURE EFFECTS TESTING

RUN NUMBER STFADY STATE STEADY STATE RESERVOIR TEMP TRANSIENT
FLOW PRESSURE PRESSURE
{c18) (PSIG) (PS1G) (°F)
71-01-XX* 100 3000 55 134 Turn-Off
71-014XX 100 3000 54,5 130 Turn-On
71-02-XX 10 3000 55 130 Turn~Off
71-024XX 10 3000 54.5 128 Turn-On
71-03-XX 100 3000 55 207 Turn-0ff{
71-034XX 100 3000 54 208 Turn-0n
71-04-XX 10 3000 55 208 Turn-Off
71-044XX 10 3000 56 206 Turn-On
71-05-XX 100 2500 55 134 Turn-0f f
71-054%x 100 2500 55 130 Turn-On
71-06-XX 10 2500 55 136 Turn-Of f
71-06+XX 10 2500 55 130 Turn-On
71-07-XX 100 2500 55.5 211 Turn-Off
71-07+XX 100 2500 55 205 Turn-On
71-08-XX 19 2500 55 210 Turn-Off
71-08+XX 10 2500 56 207 Turn-On
71-09-XX 38.5 3000 55.5 208 Turn-Off
71-094xx 38.5 3000 53.5 211 Turn-On
71-10-XX 38.5 3000 55 131 Turn=-0ff
71-10+XX 38.5 3000 54.5 129 Turn=-On
71-11-XX 97.5 2000 56 135 Turn-Of £
71-11+XX 97.5 2000 53.5 132 Turn-On
71-12-XX 10 2000 55.5 132 Turn-0ff
71-12+XX 10 2000 55 130 Turn-On
71-13-XX 100 2000 54 208 Turn-Off
71-134XX 100 2000 53 207 Turn-On
71-14-XX 10 2000 55.5 210 Turn-Of £
71-14+XX 10 2000 54.5 208 Turn-On
71-15-XX 85 1500 54.5 133 Tura-0£f
71-15+XX 85 1500 54.5 131 Turn-On
71-16-XX 10 1500 55 134 Turn-Of f
71-16+XX 10 1500 54.5 131 Turn-0On
71-17-X% 85 1500 55 215 Turn-Of f
71-17+XX 85 1500 54.5 209 Turn-On
71-18-XX 10 1500 55.5 209 Turn-Off
71-184XX 10 1500 56 209 Turn-On
71-19-XX 100 3500 56 134 Turn=-0ff
71~19+XX 100 3500 55 12 Turn=-0n
71-20-XX 10 3500 55.5 133 Turn-Off
71-20+XX 10 3500 54.5 130 Turn-On
71-21-XX 100 3500 55 210 Turn-0ff
71-214XX 100 3500 56 209 Turn-On
71-22-XX 10 3500 56 205 Turn-Off
71-22+3X 10 3500 54,5 208 Turn-On
71-23-Xx 100 3750 54.5 134 Turn-Of f
71-23+XX 100 3750 54.5 130 Turn-On
71-24-XX 10 3750 54.5 130 Turn-Off
T1-244%X p) 3750 54.5 130 Turn-On
71-25-XX 100 3750 55 211 Tura-Off
71-25+XX 100 3750 54 208 Turn-On
71-26-%XX 10 3750 55.5 208 Turn-0f f
71-264XX 10 3750 55 207 Turn-0On
71-27-XX 57 ] 65 135 Turn-Nff
71-274XX 57 3000 6G 130 Turn-On

® - XX denotes measured data parameters
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A turn-on transient was also made with the input data in Figures 315,
316 and 317. The steady state flow was 100 CIS and the temperature 130°F,
The computer ocutput in Figure 318, 319, 320 and 321 show good correlation
with the test data. In Figure 320 the predicted pressure dip at 20
millisecond closely follows the data. However the computed pressures from
about 30 to 80 milliseconds fall 150 to 200 psi below the actual values.
This is typical of all the HYTRAN simulations of turn-on transients. It
indicates that the damping terms provided by the dynawmic friction function
are perhaps too conservative.

The test data in Figures 322 and 323 were input with the data in
FJigure 324 for a turn-off transient simulation at a system pressure
of 1500 psig, a temperature of 133°F and a 85 CIS steady state flow rate.
The results in Figures 325, 326, 327 and 328 show gond correlation with

the measured data.,
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The turn-on transient yun with the input data in Figures 329,
330 and 331 also shows that even at this lower system pressure the HYTRAN
program is still able to accurately predict the system transients. The
results are shown in Figures 332, 333, 334 and 335. 1In Figure 333 the
measured flow does not rise as quickly as the computed data. This discrepancy
exists because tie hot film anemometers used in measuring the flow records
local velocity changes in the line's velocity profile, where as the computer
program calculates average line velocities,

A computer simulation at 3750 psig and at 211°F and 100 CIS was tried.
The input data is shown in Figures 336, 337 and 338. The results in 339,
340, and 341 again show good correlation to the actual data.

Likewise for a turn-on simulation the predicted data in Figures 342,
343, 344 and 345 give good correlation. The input data is in Figures 346,
347 and 348.

b. Conclusions - The HYTRAN calculations of flows and pressures

E compare reasonably well with the test data measured in the Lab.
The verification results indicate that the mathematical theory used
in the HYTRAN program is applicable to systems with pressure ranges

from 1500 to 3750 PSIG.
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11. HYTRAN PROGRAM VERIFICATION FOR AIR EFFECTG AND RESERVOIR MODEL

In this section the test results on return line transients are
presenited. The effects of different system air content levels were
monitored at various valve closure rates and system operating temperatures.
The testing was performed on a 1/2'" line system with MIL-H-83282 hydraulic
fluid.

The air effects/reservoir testing is a continuation of the investigation
of the cavitation effects in return line systems, The computer simulation
of the turn-on and turn-off transients using the HYTRAN line cavitation model
gave reasonable correlation to the trest data.

The air effects/reservoir testing was run ou the system configuration
shown in Figure 349,

The following parameters were recorded for the test rums: P1l, P2,
P3, Q3, P4, Q4, P5, P6, and XCV-the valve position. The P4 pressure transducer
is located 3.5 inches upstream of the F-4 PC reservoir and the P5 transducer
measures the pressure inside. The difference between P4 and P5 represent
the entry and exit losses from the one inch line to the large volume of

tae reservoir.
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F16 JFS i
ACCUMULATOR i 348.38
a [‘ p1
! h] iy
~tn- -

l j 363.88
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> 304 S.S. TUBING

F4 PC v PS
RESERVOIR E’_‘:# Ly P6
H] —

FIGURE 349, AIR EFFECTS TEST SETUP

The test runs are listed in Table 16. All the runs were made at
57 CIS and the reservoir pressure was kept close to 65 psig. The control
valve operating times weve varied from 2 to 16 milliseconds. Nitrogen
gas was introduced while the system was running through a quick disconnect
fitting downstream of the pump outlet. After the nitrogen was dissolved
into the systems fluid the air content was measured with a mercury filled
aire-ometer. Transient tests were run at 0.4, 12, 25, 30, 38 and 48 percent

dissolved air by volume.
a. Cavitation Effects Testing at Dif ferent Aailr Contents - The first

test series was run at 0.4% systcom air content. Run numbers 70-01-XX
and 70-Al-XX were turn-off transients with valve closure rates of 4 and
16 milliseconds respectively. The plotted data is found in Figures
350, 351, 352, 353, 354, 355 and 356. All the pressures are plotted
as gage pressures.

In Figure 350 valve closure time was 4 milliseconds. The initial
transient spike at .33 seconds goes to 1000 psig. With the slower valve
closing time, Figure 356 shows that 940 psig 1s the maximum pressure.

The frequency of the decaying pressure is the same in both plots.
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Figure 352 shows the flow decelerating rapidly after valve closure
to zero flow at .24 seconds. The flow reverses and accelerates until

the cavity collapses causing the pressure wave at .34 seconds. The

~§ pressure rises to 950 psig and the flow drops to almost zero. The flow
’;! eventually stops and the line pressure settles at about 62 psig, the
et reservoir pressure.

~ The P4 transducer was located 3.5 inches from the entrance to the

AT - reservoir. In Figure 353 the pressure spikes reach 460 psig. The flow
§ trace in Figure 354 shows exactly when these pressure spikes occurred.

This can also be seen in the internal reservoir pressure in Figure 355.

TABLE 16, AIR EFFECTS/RESERVOIR TESTING

Run Flow Reservoir Control Valve System Air Temp. Transient
‘ Number Rate Pressure Operat. Time Content
B (CIS) {PSIG) (msec) (&3] (°F)
70-01-XX 57 64.5 4 0.4 137 Turn-0ff
70-01+xx " 60.0 2 " 128 Turn-On
70-A1-xx " 64.0 16 " 136 Turn-0ff
70-02-XX " 65.0 4 " 213 Turn-0ff
70-02+XK " 57.0 2 v 208 Turn-0On
70-A2-XX " 65.0 12 0.4 212 Turn-Off
70-05-XX " 66.0 4 12 136 Turn-0f £
70-054+xx " 60.0 2 " 132 Turn-On
70A05-xx " 65.0 16 " 133 Turn-0ff
70A06-XX " 65.0 12 " 210 Turn-Off
70-06-Xx " 65.5 4 " 209 Turn-0f¢
i 70-06+XX " 58.5 2 12 207 Turnu-On
' 70-11-XX " 66.0 4 25 132 Turn-0ff
70-11+Xx " 60.0 2 " 130 Turn-On
70A11-XX " 65.0 16 " 136 Turn-0ff
70A12-XX " 65.0 12 " 212 Turn-0fr
70-12-xx " 65.5 4 " 212 Turn-0f:
70-12+XX " 58.0 2 25 207 Turn-0On
70-13-XX " 65.0 4 30 137 Turn-Off
70-13+xx " 60.0 2 " 130 Turn-On
70A13-XX " 64.5 16 " 133 Turn-0f¢{
70A14-XX " 65.0 12 " 212 Turn-0ff
70-14-XX " 64.0 4 " 212 Turn-0ff
70-14+XX " 59.0 2 30 208 Turn-On
3 70-15-XX " 65.0 4 38 135 Turn-0ff
70-15+X¥ " 60.0 2 " 125 Tura-0n
70A15-xx " 64,5 16 " 130 Turn-0ff
o 70A16-XX " 66.5 12 " 213 Turn=-0ff
70~16-XX " 63.5 4 " 210 Turn-0ff{
70-16+X " 57.9 2 38 207 Turn-On
70~17-XX " 65.0 4 48 132 Turn~0f ¢
70-174XX " 60.0 2 " 126 Turn-On
7OAYT=X3N " €5.5 16 " 135 Turn-0ff
oo la-n " 63.0 12 " 212 [urn=0rff
70-18-%x% " 65.0 4 " 210 Turn-O1f
70~18+XX 57 60.0 2 48 207 Turn-0On
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A turn-on transient run was made at 0.47 ailr content. The results
are shown 1in Figures 357, 358, 359, 360, 361 and 362.

Turn-cn and turn-off transients were next run with 12% air content
i1. the test fixture. Results from this testing is found in Figures
363, 364, 365, 366, 367 and 368. Figures 363 and 368 show the effects
of different valve clcsure rates on the peak pressure spike in the return
line system. The peak pressure for the 4 millisecond valve closure in
Figure 363 was 900 psig at .34 seconds. The corresponding peak pressure
in Figure 368 with a 16 millisecond valve closing time was 850 psig.
Again the pressure decaylng frequency was the same for the two traces.
The 12% air conteut turn-off transient runs indicate a more damped
pressure and flow decay. In Figure 363 there are a total of 10 pressure
peaks, while Figure 350 has 13. The initial pressure peaks reach 900
psig, but the second peak in Figure 363 is about 100 psig below the
same spike in Figure 350. The flow in Figure 365 settles to zero a
little taster than shown in Figure 352. The turn-on transient data for

the 12% air content runs are not noticeably different than the ones

at .47 air content.
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Run numbers 70-11- and 70-11+ were made with 25% air content

dissolved in the test system. The higher air content runs are

significantly different from the 0.4% and 12% runs, In Figure

369 turn-off transient the air coming out of solution has a

significant damping effect on the return transient pressure spikes.
The turn-or transient run in Figure 370 also exhibits a more

damped response than Figure 357,

LSO T T TR T
ARAN e L{_,[f ] irl L EER T T TH
i e oo I 00 4 o S B T - 1]
P mmE et i:,q‘ LR e T R
R 19@@ :T":ﬁ SREES: '.;1*_—:‘!:{_‘ FE R ‘f’rj:;l{” 11
S RENESE AR
U 110D H1++
R I S - -
E
N 7921
P
S
I 300
| !‘+
”I“* .
i 1]
- 1 D I 1 1
3.2 @.25 3. 50

TIME IN SECONDS

FIGURE 357. CAVITATION EFFECTS
70-01+P2 TURN-ON TRANSIENT
57 CIS 130°F

272




LA

it

Al b g o ol

am gy

i

-

TN

TIME IN SECONDS

LrWnmIdu —z an-

CAVITATION EFFECTS

GURE 358.

T

P

70-01+P3 TURN-ON TRANSIENT

130°F

57 CIS

FHW. T m -
-t Tp] o
g L] .
L
o g
Tt
1T
L
P
e i
T =
a £
Z uE
w S E
2
oW HES
Q 0 = E R
no  E.7
,2N mwm
- 29°
@ < O~
8 Do~
i W o
. . *al
T3
1